Automorphisms and twisted forms of generalized Witt Lie algebras
Author:
William C. Waterhouse
Journal:
Trans. Amer. Math. Soc. 327 (1991), 185200
MSC:
Primary 17B40; Secondary 17B50
MathSciNet review:
1038018
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove that the automorphisms of the generalized Witt Lie algebras over arbitrary commutative rings of characteristic all come from automorphisms of the algebras on which they are defined as derivations. By descent theory, this result then implies that if a Lie algebra over a field becomes isomorphic to over the algebraic closure, it is a derivation algebra of the type studied long ago by Ree. Furthermore, all isomorphisms of those derivation algebras are induced by isomorphisms of their underlying associative algebras.
 [1]
Harry
Prince Allen and Moss
Eisenberg Sweedler, A theory of linear descent based upon Hopf
algebraic techniques, J. Algebra 12 (1969),
242–294. MR 0242906
(39 #4233)
 [2]
N.
Bourbaki, Éléments de mathématique. XXVI.
Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie,
Actualités Sci. Ind. No. 1285. Hermann, Paris, 1960 (French). MR 0132805
(24 #A2641)
 [3]
N.
Jacobson, Classes of restricted Lie algebras of characteristic
𝑝. II, Duke Math. J. 10 (1943),
107–121. MR 0007749
(4,187a)
 [4]
Nathan
Jacobson, Lie algebras, Dover Publications, Inc., New York,
1979. Republication of the 1962 original. MR 559927
(80k:17001)
 [5]
Rimhak
Ree, On generalized Witt algebras,
Trans. Amer. Math. Soc. 83 (1956), 510–546. MR 0082058
(18,491b), http://dx.doi.org/10.1090/S00029947195600820583
 [6]
Rimhak
Ree, Note on generalized Witt algebras, Canad. J. Math.
11 (1959), 345–352. MR 0104715
(21 #3468)
 [7]
William
C. Waterhouse, Automorphism schemes and forms of Witt Lie
algebras, J. Algebra 17 (1971), 34–40. MR 0274542
(43 #305)
 [8]
William
C. Waterhouse, Introduction to affine group schemes, Graduate
Texts in Mathematics, vol. 66, SpringerVerlag, New YorkBerlin, 1979.
MR 547117
(82e:14003)
 [9]
Robert
Lee Wilson, Classification of generalized Witt
algebras over algebraically closed fields, Trans. Amer. Math. Soc. 153 (1971), 191–210. MR 0316523
(47 #5070), http://dx.doi.org/10.1090/S00029947197103165236
 [10]
Robert
Lee Wilson, Simple Lie algebras over fields of prime
characteristic, Proceedings of the International Congress of
Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc.,
Providence, RI, 1987, pp. 407–416. MR 934240
(89d:17009)
 [1]
 H. P. Allen and M. E. Sweedler, A theory of linear descent based upon Hopf algebraic techniques, J. Algebra 12 (1969), 242294. MR 0242906 (39:4233)
 [2]
 N. Bourbaki, Groupes et algèbres de Lie, Chapitre I: Algèbres de Lie, Hermann, Paris, 1960. MR 0132805 (24:A2641)
 [3]
 N. Jacobson, Classes of restricted Lie algebras of characteristic . II, Duke Math. J. 10 (1943), 107121. MR 0007749 (4:187a)
 [4]
 , Lie algebras, Dover, New York, 1979. (Reprint of 1962 edition, Interscience, New York.) MR 559927 (80k:17001)
 [5]
 R. Ree, On generalized Witt algebras, Trans. Amer. Math. Soc. 83 (1956), 510546. MR 0082058 (18:491b)
 [6]
 , Note on generalized Witt Lie algebras, Canad. J. Math. 11 (1959), 345352. MR 0104715 (21:3468)
 [7]
 W. C. Waterhouse, Automorphism schemes and forms of Witt Lie algebras, J. Algebra 17 (1971), 3440. MR 0274542 (43:305)
 [8]
 , Introduction to affine group schemes, Graduate Texts in Math., vol. 66, SpringerVerlag, New York, 1979. MR 547117 (82e:14003)
 [9]
 R. L. Wilson, Classification of generalized Witt algebras over algebraically closed fields, Trans. Amer. Math. Soc. 153 (1971), 191210. MR 0316523 (47:5070)
 [10]
 , Simple Lie algebras over fields of prime characteristic, Proc. Internat. Congr. Math. (Berkeley), 1986, pp. 407416. MR 934240 (89d:17009)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
17B40,
17B50
Retrieve articles in all journals
with MSC:
17B40,
17B50
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002994719911038018X
PII:
S 00029947(1991)1038018X
Article copyright:
© Copyright 1991
American Mathematical Society
