Flowbox manifolds

Authors:
J. M. Aarts and L. G. Oversteegen

Journal:
Trans. Amer. Math. Soc. **327** (1991), 449-463

MSC:
Primary 54H20; Secondary 54E99

DOI:
https://doi.org/10.1090/S0002-9947-1991-1042286-8

MathSciNet review:
1042286

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A separable and metrizable space is called a flowbox manifold if there exists a base for the open sets each of whose elements has a product structure with the reals as a factor such that a natural consistency condition is met. We show how flowbox manifolds can be divided into orientable and nonorientable ones. We prove that a space is an orientable flowbox manifold if and only if can be endowed with the structure of a flow without restpoints. In this way we generalize Whitney's theory of regular families of curves so as to include self-entwined curves in general separable metric spaces. All spaces under consideration are separable and metrizable.

**[Al]**J. M. Aarts,*The structure of orbits in dynamical systems*, Fund. Math.**129**(1988), 39-58. MR**954894 (89k:54092)****[A2]**-,*Orientations of orbits in flows*, Papers on General Topology and Related Category Theory and Topological Algebra, no. 552, Ann. New York Acad. Sci., 1989, 1-7. MR**1020768 (90h:54045)****[AM]**J. M. Aarts and M. Martens,*Flows on one-dimensional spaces*, Fund. Math.**131**(1988), 53-67. MR**970914 (89k:54093)****[AHO]**J. M. Aarts, C. L. Hagopian and L. G. Oversteegen,*The orientability of matchbox manifolds*, Pacific J. Math (to appear). MR**1120708 (92h:54044)****[Ca]**D. H. Carlson,*A generalization of Vinograd's theorem for dynamical systems*, J. Differential Equations**11**(1972), 193-201. MR**0289891 (44:7078)****[Ch]**W. C. Chewning,*A dynamical system on*-*dimensional Euclidean space neither isomorphic nor equivalent to a differential system*, Bull. Amer. Math. Soc.**80**(1974), 150-153. MR**0326781 (48:5124)****[CN]**C. Camacho and A. L. Neto,*Geometric theory of foliations*, Birkhäuser, Basel, 1985.**[G]**A. Gutek,*On compact spaces which are locally Cantor bundles*, Fund. Math.**108**(1980), 27-31. MR**585557 (81k:54065)****[HI]**O. Hajek,*Dynamical systems in the plane*, Academic Press, London, 1968. MR**0240418 (39:1767)****[H2]**-,*Local characterization of local semi-dynamical systems*, Math. Systems Theory**2**(1968), 17-25. MR**0239575 (39:932)****[MR]**M. W. Mislove and J. T. Rogers, Jr.,*Local product structures on homogeneous continua*, Topology Appl.**31**(1989), 259-267. MR**997493 (90m:54044a)****[N]**S. B. Nadler, Jr.,*Hyperspaces of sets*, Dekker, New York, 1978. MR**0500811 (58:18330)****[NS]**V. V. Nemytskii and V. V. Stepanov,*Qualitative theory of differential equations*, Princeton Univ. Press, Princeton, N. J., 1960. MR**0121520 (22:12258)****[U]**T. Ura,*Isomorphisms and local characterization of local dynamical systems*, Funkcial. Ekvac.**12**(1969), 99-122. MR**0259886 (41:4515)****[W]**H. Whitney,*Regular families of curves*, Ann. of Math.**34**(1933), 244-270. MR**1503106**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54H20,
54E99

Retrieve articles in all journals with MSC: 54H20, 54E99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1042286-8

Article copyright:
© Copyright 1991
American Mathematical Society