Stability of travelling wave solutions of diffusive predator-prey systems

Authors:
R. Gardner and C. K. R. T. Jones

Journal:
Trans. Amer. Math. Soc. **327** (1991), 465-524

MSC:
Primary 92D25; Secondary 35K55, 58G25, 92D40

DOI:
https://doi.org/10.1090/S0002-9947-1991-1013331-0

MathSciNet review:
1013331

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The stability of travelling wave solutions of singularly perturbed, diffusive predator-prey systems is proved by showing that the linearized operator about such a solution has no unstable spectrum and that the translation eigenvalue at is simple. The proof illustrates the application of some recently developed geometric and topological methods for counting eigenvalues.

**[AGJ]**J. Alexander, R. Gardner, and C. Jones,*A topological invariant arising in the stability of travelling waves*, (submitted).**[A]**M. Atiyah, -*theory*, Benjamin, New York, 1967. MR**0224083 (36:7130)****[F]**P. Fife,*Mathematical aspects of reacting and diffusing systems*, Lecture Notes in Biomath., vol. 28, Springer-Verlag, New York, 1979. MR**527914 (80g:35001)****[FM]**P. Fife and J. B. McLeod,*The approach of solutions of nonlinear diffusion equations to travelling front solutions*, Arch. Rational Mech. Anal.**65**(1977), 335-361. MR**0442480 (56:862)****[J]**C. K. R. T. Jones,*Stability of the travelling wave solution of the FitzHugh-Nagumo system*, Trans. Amer. Math. Soc.**286**(1984), 431-469. MR**760971 (86b:35011)****[G1]**R. A. Gardner,*Existence of travelling wave solutions of predator-prey systems via the connection index*, SIAM J. Appl. Math.**44**(1984), 56-79. MR**730001 (85c:92030)****[G2]**-,*Topological methods arising in the study of travelling waves*, Reaction-Diffusion Equations (K. J. Brown and A. A. Lacey, eds.), Clarendon Press, Oxford, 1990, pp. 173-198.**[GS]**R. A. Gardner and J. A. Smoller,*The existence of periodic travelling waves for singularly perturbed predator-prey equations via the Conley index*, J. Differential Equations (to appear).**[H]**D. Henry,*Geometric theory of semilinear parabolic equations*, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981. MR**610244 (83j:35084)****[K]**T. Kato,*Perturbation theory for linear operators*, Springer-Verlag, Berlin, 1966. MR**0203473 (34:3324)****[MS]**J. W. Milnor and J. D. Stasheff,*Characteristic classes*, Ann. of Math. Studies, no. 76, Princeton Univ. Press, Princeton, N. J., 1974. MR**0440554 (55:13428)****[NF]**Y. Nishiura and H. Fujii,*Stability of singularly perturbed solutions to systems of reaction-diffusion equations*, SIAM J. Math. Anal.**18**(1987), 1726-1770. MR**911661 (88j:35089)****[NMIF]**Y. Nishiura, M. Mimura, H. Ikeda, and H. Fujii,*Singular limit analysis of stability of travelling wave solutions in bistable reaction-diffusion systems*, preprint. MR**1032729 (91d:35024)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
92D25,
35K55,
58G25,
92D40

Retrieve articles in all journals with MSC: 92D25, 35K55, 58G25, 92D40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1013331-0

Article copyright:
© Copyright 1991
American Mathematical Society