Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stability of travelling wave solutions of diffusive predator-prey systems


Authors: R. Gardner and C. K. R. T. Jones
Journal: Trans. Amer. Math. Soc. 327 (1991), 465-524
MSC: Primary 92D25; Secondary 35K55, 58G25, 92D40
DOI: https://doi.org/10.1090/S0002-9947-1991-1013331-0
MathSciNet review: 1013331
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The stability of travelling wave solutions of singularly perturbed, diffusive predator-prey systems is proved by showing that the linearized operator about such a solution has no unstable spectrum and that the translation eigenvalue at $ \lambda = 0$ is simple. The proof illustrates the application of some recently developed geometric and topological methods for counting eigenvalues.


References [Enhancements On Off] (What's this?)

  • [AGJ] J. Alexander, R. Gardner, and C. Jones, A topological invariant arising in the stability of travelling waves, (submitted).
  • [A] M. Atiyah, $ K$-theory, Benjamin, New York, 1967. MR 0224083 (36:7130)
  • [F] P. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomath., vol. 28, Springer-Verlag, New York, 1979. MR 527914 (80g:35001)
  • [FM] P. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal. 65 (1977), 335-361. MR 0442480 (56:862)
  • [J] C. K. R. T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc. 286 (1984), 431-469. MR 760971 (86b:35011)
  • [G1] R. A. Gardner, Existence of travelling wave solutions of predator-prey systems via the connection index, SIAM J. Appl. Math. 44 (1984), 56-79. MR 730001 (85c:92030)
  • [G2] -, Topological methods arising in the study of travelling waves, Reaction-Diffusion Equations (K. J. Brown and A. A. Lacey, eds.), Clarendon Press, Oxford, 1990, pp. 173-198.
  • [GS] R. A. Gardner and J. A. Smoller, The existence of periodic travelling waves for singularly perturbed predator-prey equations via the Conley index, J. Differential Equations (to appear).
  • [H] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981. MR 610244 (83j:35084)
  • [K] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966. MR 0203473 (34:3324)
  • [MS] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies, no. 76, Princeton Univ. Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
  • [NF] Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations, SIAM J. Math. Anal. 18 (1987), 1726-1770. MR 911661 (88j:35089)
  • [NMIF] Y. Nishiura, M. Mimura, H. Ikeda, and H. Fujii, Singular limit analysis of stability of travelling wave solutions in bistable reaction-diffusion systems, preprint. MR 1032729 (91d:35024)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 92D25, 35K55, 58G25, 92D40

Retrieve articles in all journals with MSC: 92D25, 35K55, 58G25, 92D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1013331-0
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society