Stability of travelling wave solutions of diffusive predator-prey systems

Authors:
R. Gardner and C. K. R. T. Jones

Journal:
Trans. Amer. Math. Soc. **327** (1991), 465-524

MSC:
Primary 92D25; Secondary 35K55, 58G25, 92D40

MathSciNet review:
1013331

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The stability of travelling wave solutions of singularly perturbed, diffusive predator-prey systems is proved by showing that the linearized operator about such a solution has no unstable spectrum and that the translation eigenvalue at is simple. The proof illustrates the application of some recently developed geometric and topological methods for counting eigenvalues.

**[AGJ]**J. Alexander, R. Gardner, and C. Jones,*A topological invariant arising in the stability of travelling waves*, (submitted).**[A]**M. F. Atiyah,*𝐾-theory*, Lecture notes by D. W. Anderson, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0224083****[F]**Paul C. Fife,*Mathematical aspects of reacting and diffusing systems*, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR**527914****[FM]**Paul C. Fife and J. B. McLeod,*The approach of solutions of nonlinear diffusion equations to travelling front solutions*, Arch. Ration. Mech. Anal.**65**(1977), no. 4, 335–361. MR**0442480****[J]**Christopher K. R. T. Jones,*Stability of the travelling wave solution of the FitzHugh-Nagumo system*, Trans. Amer. Math. Soc.**286**(1984), no. 2, 431–469. MR**760971**, 10.1090/S0002-9947-1984-0760971-6**[G1]**Robert A. Gardner,*Existence of travelling wave solutions of predator-prey systems via the connection index*, SIAM J. Appl. Math.**44**(1984), no. 1, 56–79. MR**730001**, 10.1137/0144006**[G2]**-,*Topological methods arising in the study of travelling waves*, Reaction-Diffusion Equations (K. J. Brown and A. A. Lacey, eds.), Clarendon Press, Oxford, 1990, pp. 173-198.**[GS]**R. A. Gardner and J. A. Smoller,*The existence of periodic travelling waves for singularly perturbed predator-prey equations via the Conley index*, J. Differential Equations (to appear).**[H]**Daniel Henry,*Geometric theory of semilinear parabolic equations*, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR**610244****[K]**Tosio Kato,*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473****[MS]**John W. Milnor and James D. Stasheff,*Characteristic classes*, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR**0440554****[NF]**Yasumasa Nishiura and Hiroshi Fujii,*Stability of singularly perturbed solutions to systems of reaction-diffusion equations*, SIAM J. Math. Anal.**18**(1987), no. 6, 1726–1770. Translated in J. Soviet Math. 45 (1989), no. 3, 1205–1218. MR**911661**, 10.1137/0518124**[NMIF]**Y. Nishiura, M. Mimura, H. Ikeda, and H. Fujii,*Singular limit analysis of stability of traveling wave solutions in bistable reaction-diffusion systems*, SIAM J. Math. Anal.**21**(1990), no. 1, 85–122. MR**1032729**, 10.1137/0521006

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
92D25,
35K55,
58G25,
92D40

Retrieve articles in all journals with MSC: 92D25, 35K55, 58G25, 92D40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1013331-0

Article copyright:
© Copyright 1991
American Mathematical Society