Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Area integral estimates for the biharmonic operator in Lipschitz domains

Authors: Jill Pipher and Gregory Verchota
Journal: Trans. Amer. Math. Soc. 327 (1991), 903-917
MSC: Primary 35J40; Secondary 35B65
MathSciNet review: 1024776
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D \subseteq {{\mathbf{R}}^n}$ be a Lipschitz domain and let $ u$ be a function biharmonic in $ D$, i.e., $ \Delta \Delta u= 0$ in $ D$. We prove that the nontangential maximal function and the square function of the gradient of $ u$ have equivalent $ {L^p}(d\mu)$ norms, where $ d\mu \in {A^\infty }\,(d\sigma)$ and $ d\sigma $ is surface measure on $ \partial D$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J40, 35B65

Retrieve articles in all journals with MSC: 35J40, 35B65

Additional Information

PII: S 0002-9947(1991)1024776-7
Article copyright: © Copyright 1991 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia