Reflected Brownian motion in a cone with radially homogeneous reflection field
Authors:
Y. Kwon and R. J. Williams
Journal:
Trans. Amer. Math. Soc. 327 (1991), 739780
MSC:
Primary 60J65; Secondary 35J99, 58G32, 60G44
MathSciNet review:
1028760
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This work is concerned with the existence and uniqueness of a strong Markov process that has continuous sample paths and the following additional properties. (i) The state space is a cone in dimensions , and the process behaves in the interior of the cone like ordinary Brownian motion. (ii) The process reflects instantaneously at the boundary of the cone, the direction of reflection being fixed on each radial line emanating from the vertex of the cone. (iii) The amount of time that the process spends at the vertex of the cone is zero (i.e., the set of times for which the process is at the vertex has zero Lebesgue measure). The question of existence and uniqueness is cast in precise mathematical terms as a submartingale problem in the style used by Stroock and Varadhan for diffusions on smooth domains with smooth boundary conditions. The question is resolved in terms of a real parameter which in general depends in a rather complicated way on the geometric data of the problem, i.e., on the cone and the directions of reflection. However, a criterion is given for determining whether . It is shown that there is a unique continuous strong Markov process satisfying (i)(iii) above if and only if , and that starting away from the vertex, this process does not reach the vertex if and does reach the vertex almost surely if . If , there is a unique continuous strong Markov process satisfying (i) and (ii) above; it reaches the vertex of the cone almost surely and remains there. These results are illustrated in concrete terms for some special cases. The process considered here serves as a model for comparison with a reflected Brownian motion in a cone having a nonradially homogeneous reflection field. This is discussed in a subsequent work by Kwon.
 [1]
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Appl. Math. Series 55, National Bureau of Standards, Washington, D.C., 1972.
 [2]
R.
F. Bass and É.
Pardoux, Uniqueness for diffusions with piecewise constant
coefficients, Probab. Theory Related Fields 76
(1987), no. 4, 557–572. MR 917679
(89b:60183), http://dx.doi.org/10.1007/BF00960074
 [3]
D.
L. Burkholder, Exit times of Brownian motion, harmonic
majorization, and Hardy spaces, Advances in Math. 26
(1977), no. 2, 182–205. MR 0474525
(57 #14163)
 [4]
Kai
Lai Chung, Lectures from Markov processes to Brownian motion,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Science], vol. 249, SpringerVerlag, New YorkBerlin,
1982. MR
648601 (84c:60091)
 [5]
Michael
G. Crandall and Paul
H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and
linearized stability, Arch. Rational Mech. Anal. 52
(1973), 161–180. MR 0341212
(49 #5962)
 [6]
Björn
E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational
Mech. Anal. 65 (1977), no. 3, 275–288. MR 0466593
(57 #6470)
 [7]
Stewart
N. Ethier and Thomas
G. Kurtz, Markov processes, Wiley Series in Probability and
Mathematical Statistics: Probability and Mathematical Statistics, John
Wiley & Sons, Inc., New York, 1986. Characterization and convergence.
MR 838085
(88a:60130)
 [8]
David
Gilbarg and Neil
S. Trudinger, Elliptic partial differential equations of second
order, 2nd ed., Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], vol. 224,
SpringerVerlag, Berlin, 1983. MR 737190
(86c:35035)
 [9]
P.
Hall and C.
C. Heyde, Martingale limit theory and its application,
Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New
YorkLondon, 1980. Probability and Mathematical Statistics. MR 624435
(83a:60001)
 [10]
Samuel
Karlin and Howard
M. Taylor, A second course in stochastic processes, Academic
Press, Inc. [Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1981.
MR 611513
(82j:60003)
 [11]
M.
G. Kreĭn and M.
A. Rutman, Linear operators leaving invariant a cone in a Banach
space, Amer. Math. Soc. Translation 1950 (1950),
no. 26, 128. MR 0038008
(12,341b)
 [12]
Thomas
G. Kurtz, Approximation of population processes, CBMSNSF
Regional Conference Series in Applied Mathematics, vol. 36, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. MR 610982
(82j:60160)
 [13]
Y. Kwon, The submartingale problem for Brownian motion in a cone with nonconstant oblique reflection, Ph.D. Dissertation, Univ. of Washington, 1989.
 [14]
Serge
Lang, Differential manifolds, 2nd ed., SpringerVerlag, New
York, 1985. MR
772023 (85m:58001)
 [15]
JeanFrançois
Le Gall, Mouvement brownien, cônes et processus stables,
Probab. Theory Related Fields 76 (1987), no. 4,
587–627 (French, with English summary). MR 917681
(89b:60193), http://dx.doi.org/10.1007/BF00960076
 [16]
P.L.
Lions and A.S.
Sznitman, Stochastic differential equations with reflecting
boundary conditions, Comm. Pure Appl. Math. 37
(1984), no. 4, 511–537. MR 745330
(85m:60105), http://dx.doi.org/10.1002/cpa.3160370408
 [17]
Jürgen
Moser, A new proof of De Giorgi’s theorem concerning the
regularity problem for elliptic differential equations, Comm. Pure
Appl. Math. 13 (1960), 457–468. MR 0170091
(30 #332)
 [18]
Yu.
V. Prohorov, Convergence of random processes and limit theorems in
probability theory, Teor. Veroyatnost. i Primenen. 1
(1956), 177–238 (Russian, with English summary). MR 0084896
(18,943b)
 [19]
M.
H. Protter and H.
F. Weinberger, On the spectrum of general second
order operators, Bull. Amer. Math. Soc. 72 (1966), 251–255.
MR
0190527 (32 #7939), http://dx.doi.org/10.1090/S000299041966114854
 [20]
Daniel
W. Stroock and S.
R. Srinivasa Varadhan, Multidimensional diffusion processes,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 233, SpringerVerlag, BerlinNew York,
1979. MR
532498 (81f:60108)
 [21]
Daniel
W. Stroock and S.
R. S. Varadhan, Diffusion processes with boundary conditions,
Comm. Pure Appl. Math. 24 (1971), 147–225. MR 0277037
(43 #2774)
 [22]
S.
R. S. Varadhan and R.
J. Williams, Brownian motion in a wedge with oblique
reflection, Comm. Pure Appl. Math. 38 (1985),
no. 4, 405–443. MR 792398
(87c:60066), http://dx.doi.org/10.1002/cpa.3160380405
 [1]
 M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Appl. Math. Series 55, National Bureau of Standards, Washington, D.C., 1972.
 [2]
 R. F. Bass and E. Pardoux, Uniqueness for diffusions with piecewise constant coefficients, Probab. Theory Related Fields 76 (1987), 557572. MR 917679 (89b:60183)
 [3]
 D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Adv. in Math. 26 (1977), 182205. MR 0474525 (57:14163)
 [4]
 K. L. Chung, Lectures from Markov processes to Brownian motion, SpringerVerlag, New York, 1982. MR 648601 (84c:60091)
 [5]
 M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161180. MR 0341212 (49:5962)
 [6]
 B. E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 275280. MR 0466593 (57:6470)
 [7]
 S. N. Ethier and T. G. Kurtz, Markov processes, Wiley, New York, 1986. MR 838085 (88a:60130)
 [8]
 D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., SpringerVerlag, New York, 1983. MR 737190 (86c:35035)
 [9]
 P. Hall and C. C. Heyde, Martingale limit theory and its application, Academic Press, New York, 1980. MR 624435 (83a:60001)
 [10]
 S. Karlin and H. M. Taylor, A Second course in stochastic processes, Academic Press, New York, 1981. MR 611513 (82j:60003)
 [11]
 M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. (1) 10 (1962), 199325. MR 0038008 (12:341b)
 [12]
 T. G. Kurtz, Approximation of population processes, CBMSNSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pa., 1981. MR 610982 (82j:60160)
 [13]
 Y. Kwon, The submartingale problem for Brownian motion in a cone with nonconstant oblique reflection, Ph.D. Dissertation, Univ. of Washington, 1989.
 [14]
 S. Lang, Differentiable manifolds, SpringerVerlag, New York, 1985. MR 772023 (85m:58001)
 [15]
 J.F. Le Gall, Mouvement brownien, cônes et processus stable, Probab. Theory Related Fields 76 (1987), 587627. MR 917681 (89b:60193)
 [16]
 P. L. Lions and A. S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984), 511537. MR 745330 (85m:60105)
 [17]
 J. Moser, A new proof of de Gorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457468. MR 0170091 (30:332)
 [18]
 Y. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (1956), 157214. MR 0084896 (18:943b)
 [19]
 M. H. Protter and H. F. Weinberger, On the spectrum of general second order operators, Bull. Amer. Math. Soc. 72 (1966), 251255. MR 0190527 (32:7939)
 [20]
 D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes, SpringerVerlag, New York, 1979. MR 532498 (81f:60108)
 [21]
 , Diffusion processes with boundary conditions, Comm. Pure Appl. Math. 24 (1971), 147225. MR 0277037 (43:2774)
 [22]
 S. R. S. Varadhan and R. J. Williams, Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math. 38 (1985), 405443. MR 792398 (87c:60066)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
60J65,
35J99,
58G32,
60G44
Retrieve articles in all journals
with MSC:
60J65,
35J99,
58G32,
60G44
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199110287609
PII:
S 00029947(1991)10287609
Keywords:
Brownian motion,
reflected,
cone,
diffusion,
existence and uniqueness,
submartingale problem,
boundary,
eigenvalue,
KreinRutman
Article copyright:
© Copyright 1991
American Mathematical Society
