The structure of open continuous mappings having two valences
Authors:
A. K. Lyzzaik and Kenneth Stephenson
Journal:
Trans. Amer. Math. Soc. 327 (1991), 525566
MSC:
Primary 30F10; Secondary 57M10
MathSciNet review:
1062192
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The authors study open continuous functions which map the unit disc to compact Riemann surfaces and which assume each value in the range space (with a finite number of exceptions) either or times for some positive integers , . Although the questions here originated in efforts to understand mapping properties of locally univalent analytic functions, the authors remove analyticity assumptions and show that the underlying issues are topological and combinatoric in nature. The mappings are studied by embedding their image surfaces in compact covering spaces, a setting which allows the consideration of fairly general ranges and which accommodates branch and exceptional points. Known results are generalized and extended; several open questions are posed, particularly regarding the higher dimensional analogues of the results.
 [1]
Lars
V. Ahlfors and Leo
Sario, Riemann surfaces, Princeton Mathematical Series, No.
26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
(22 #5729)
 [2]
Arne
Beurling, Ensembles exceptionnels, Acta Math.
72 (1940), 1–13 (French). MR 0001370
(1,226a)
 [3]
D.
A. Brannan and W.
E. Kirwan, Some covering theorems for analytic functions, J.
London Math. Soc. (2) 19 (1979), no. 1, 93–101.
MR 527740
(80d:30011), http://dx.doi.org/10.1112/jlms/s219.1.93
 [4]
D.
A. Brannan and A.
K. Lyzzaik, Some covering properties of locally univalent
functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 13
(1988), no. 1, 3–23. MR 975565
(90c:30005)
 [5]
M.
Ortel and W.
Smith, A covering theorem for continuous locally univalent maps of
the plane, Bull. London Math. Soc. 18 (1986),
no. 4, 359–363. MR 838802
(88b:30013), http://dx.doi.org/10.1112/blms/18.4.359
 [6]
E.
F. Collingwood and A.
J. Lohwater, The theory of cluster sets, Cambridge Tracts in
Mathematics and Mathematical Physics, No. 56, Cambridge University Press,
Cambridge, 1966. MR 0231999
(38 #325)
 [7]
L.
V. Keldyš, Topological imbeddings in Euclidean space,
Proceedings of the Steklov Institute of Mathematics, No. 81 (1966).
Translated from the Russian by J. Zilber, American Mathematical Society,
Providence, R.I., 1968. MR 0232371
(38 #696)
 [8]
A.
Lyzzaik and D.
Styer, A covering surface conjecture of Brannan and Kirwan,
Bull. London Math. Soc. 14 (1982), no. 1,
39–42. MR
642421 (83d:30018), http://dx.doi.org/10.1112/blms/14.1.39
 [9]
William
S. Massey, Algebraic topology: an introduction,
SpringerVerlag, New York, 1977. Reprint of the 1967 edition; Graduate
Texts in Mathematics, Vol. 56. MR 0448331
(56 #6638)
 [10]
M.
Ortel and W.
Smith, A covering theorem for continuous locally univalent maps of
the plane, Bull. London Math. Soc. 18 (1986),
no. 4, 359–363. MR 838802
(88b:30013), http://dx.doi.org/10.1112/blms/18.4.359
 [11]
Uri
Srebro, Deficiencies of immersions, Pacific J. Math.
113 (1984), no. 2, 493–496. MR 749552
(85j:57046)
 [12]
Uri
Srebro, Covering theorems for meromorphic functions, J.
Analyse Math. 44 (1984/85), 235–250. MR 801296
(86k:30021), http://dx.doi.org/10.1007/BF02790199
 [13]
Uri
Srebro and Bronislaw
Wajnryb, Covering theorems for Riemann surfaces, J. Analyse
Math. 46 (1986), 283–303. MR 861707
(88i:30077), http://dx.doi.org/10.1007/BF02796593
 [14]
Uri
Srebro and Bronislaw
Wajnryb, Covering theorems for open surfaces, Geometry and
topology (Athens, Ga., 1985) Lecture Notes in Pure and Appl. Math.,
vol. 105, Dekker, New York, 1987, pp. 265–275. MR 873298
(88a:57006)
 [15]
S. Stoïlow, Principes topologiques de la theorie des fonctions analytiques, GauthierVillars, Paris, 1938.
 [1]
 L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, Princeton, N. J., 1960. MR 0114911 (22:5729)
 [2]
 A. Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 113. MR 0001370 (1:226a)
 [3]
 D. A. Brannan and W. E. Kirwan, Some covering theorems for analytic functions, J. London Math. Soc. (2) 19 (1979), 93101. MR 527740 (80d:30011)
 [4]
 D. A. Brannan and A. K. Lyzzaik, Some covering properties of locallyunivalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), 323. MR 975565 (90c:30005)
 [5]
 K. Carne, M. Ortel, and W. Smith, Multiplicities of locally onetoone continuous maps of the plane, Bull. London Math. Soc. 18 (1987), 438442. MR 838802 (88b:30013)
 [6]
 E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Univ. Press, 1966. MR 0231999 (38:325)
 [7]
 L. V. Keldyš, Topological imbeddings in Euclidean space, Proc. Steklov Inst. Math. 8 (1966). MR 0232371 (38:696)
 [8]
 A. Lyzzaik and D. Styer, A covering surface conjecture of Brannan and Kirwan, Bull. London Math. Soc. 14 (1982), 3942. MR 642421 (83d:30018)
 [9]
 W. S. Massey, Algebraic topology: An introduction, Graduate Texts in Math., vol. 56, SpringerVerlag, New York, 1977. MR 0448331 (56:6638)
 [10]
 M. Ortel and W. Smith, A covering theorem for continuous locally univalent maps of the plane, Bull. London Math. Soc. 18 (1986), 359363. MR 838802 (88b:30013)
 [11]
 U. Srebro, Deficiences of immersions, Pacific J. Math. 113 (1984), 493496. MR 749552 (85j:57046)
 [12]
 , Covering theorems for meromorphic functions, J. Analyse Math. 44 (1984/85), 235250. MR 801296 (86k:30021)
 [13]
 U. Srebro and B. Wajnryb, Covering theorems for Riemann surfaces, J. Analyse Math. 46 (1986), 283303. MR 861707 (88i:30077)
 [14]
 , Covering theorems for open surfaces, Proceedings of the 1985 Georgia Topology Conference: Geometry and Topology, Dekker, Amsterdam, 1987, pp. 265275. MR 873298 (88a:57006)
 [15]
 S. Stoïlow, Principes topologiques de la theorie des fonctions analytiques, GauthierVillars, Paris, 1938.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
30F10,
57M10
Retrieve articles in all journals
with MSC:
30F10,
57M10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199110621922
PII:
S 00029947(1991)10621922
Article copyright:
© Copyright 1991 American Mathematical Society
