The structure of open continuous mappings having two valences

Authors:
A. K. Lyzzaik and Kenneth Stephenson

Journal:
Trans. Amer. Math. Soc. **327** (1991), 525-566

MSC:
Primary 30F10; Secondary 57M10

MathSciNet review:
1062192

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The authors study open continuous functions which map the unit disc to compact Riemann surfaces and which assume each value in the range space (with a finite number of exceptions) either or times for some positive integers , . Although the questions here originated in efforts to understand mapping properties of locally univalent analytic functions, the authors remove analyticity assumptions and show that the underlying issues are topological and combinatoric in nature. The mappings are studied by embedding their image surfaces in compact covering spaces, a setting which allows the consideration of fairly general ranges and which accommodates branch and exceptional points. Known results are generalized and extended; several open questions are posed, particularly regarding the higher dimensional analogues of the results.

**[1]**Lars V. Ahlfors and Leo Sario,*Riemann surfaces*, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR**0114911****[2]**Arne Beurling,*Ensembles exceptionnels*, Acta Math.**72**(1940), 1–13 (French). MR**0001370****[3]**D. A. Brannan and W. E. Kirwan,*Some covering theorems for analytic functions*, J. London Math. Soc. (2)**19**(1979), no. 1, 93–101. MR**527740**, 10.1112/jlms/s2-19.1.93**[4]**D. A. Brannan and A. K. Lyzzaik,*Some covering properties of locally univalent functions*, Ann. Acad. Sci. Fenn. Ser. A I Math.**13**(1988), no. 1, 3–23. MR**975565**, 10.5186/aasfm.1988.1302**[5]**M. Ortel and W. Smith,*A covering theorem for continuous locally univalent maps of the plane*, Bull. London Math. Soc.**18**(1986), no. 4, 359–363. MR**838802**, 10.1112/blms/18.4.359**[6]**E. F. Collingwood and A. J. Lohwater,*The theory of cluster sets*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR**0231999****[7]**L. V. Keldyš,*Topological imbeddings in Euclidean space*, Proceedings of the Steklov Institute of Mathematics, No. 81 (1966). Translated from the Russian by J. Zilber, American Mathematical Society, Providence, R.I., 1968. MR**0232371****[8]**A. Lyzzaik and D. Styer,*A covering surface conjecture of Brannan and Kirwan*, Bull. London Math. Soc.**14**(1982), no. 1, 39–42. MR**642421**, 10.1112/blms/14.1.39**[9]**William S. Massey,*Algebraic topology: an introduction*, Springer-Verlag, New York-Heidelberg, 1977. Reprint of the 1967 edition; Graduate Texts in Mathematics, Vol. 56. MR**0448331****[10]**M. Ortel and W. Smith,*A covering theorem for continuous locally univalent maps of the plane*, Bull. London Math. Soc.**18**(1986), no. 4, 359–363. MR**838802**, 10.1112/blms/18.4.359**[11]**Uri Srebro,*Deficiencies of immersions*, Pacific J. Math.**113**(1984), no. 2, 493–496. MR**749552****[12]**Uri Srebro,*Covering theorems for meromorphic functions*, J. Analyse Math.**44**(1984/85), 235–250. MR**801296**, 10.1007/BF02790199**[13]**Uri Srebro and Bronislaw Wajnryb,*Covering theorems for Riemann surfaces*, J. Analyse Math.**46**(1986), 283–303. MR**861707**, 10.1007/BF02796593**[14]**Uri Srebro and Bronislaw Wajnryb,*Covering theorems for open surfaces*, Geometry and topology (Athens, Ga., 1985) Lecture Notes in Pure and Appl. Math., vol. 105, Dekker, New York, 1987, pp. 265–275. MR**873298****[15]**S. Stoïlow,*Principes topologiques de la theorie des fonctions analytiques*, Gauthier-Villars, Paris, 1938.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30F10,
57M10

Retrieve articles in all journals with MSC: 30F10, 57M10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1062192-2

Article copyright:
© Copyright 1991
American Mathematical Society