Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The associated Askey-Wilson polynomials


Authors: Mourad E. H. Ismail and Mizan Rahman
Journal: Trans. Amer. Math. Soc. 328 (1991), 201-237
MSC: Primary 33C50; Secondary 42C05
DOI: https://doi.org/10.1090/S0002-9947-1991-1013333-4
MathSciNet review: 1013333
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive some contiguous relations for very well-poised $ _8{\phi _7}$ series and use them to construct two linearly independent solutions of the three-term recurrence relation of the associated Askey-Wilson polynomials. We then use these solutions to find explicit representations of two families of associated Askey-Wilson polynomials. We identify the corresponding continued fractions as quotients of two very well-poised $ _8{\phi _7}$ series and find the weight functions.


References [Enhancements On Off] (What's this?)

  • [1] G. Andrews and R. Askey, Classical orthogonal polynomials, Polynômes Orthogonaux et Applications (C. Brezinski et al., eds.), Lecture Notes in Math., vol. 1171, Springer-Verlag, Berlin and New York, 1985, pp. 36-82. MR 838970 (88c:33015b)
  • [2] R. Askey, Linearization of the product of orthogonal polynomials, Problems in Analysis (R. Gunning, ed.), Princeton Univ. Press, Princeton, N.J., 1970, pp. 223-228. MR 0344786 (49:9525)
  • [3] -, Orthogonal polynomials and special functions, Regional Conf. Ser. Appl. Math., SIAM, Philadelphia, Pa., 1975. MR 0481145 (58:1288)
  • [4] R. Askey and M. E. H. Ismail, Permutation problems and special functions, Canad. J. Math. 28 (1976), 853-874. MR 0406808 (53:10594)
  • [5] -, Recurrence relations, continued fractions and orthogonal polynomials, Mem. Amer. Math. Soc., no. 300, 1984. MR 743545 (85g:33008)
  • [6] R. Askey and J. A. Wilson, A set of orthogonal polynomials that generalize the Racah coefficients or $ 6 - j$ symbols, SIAM J. Math. Anal. 10 (1979), 1008-1016. MR 541097 (80k:33012)
  • [7] -, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319, 1985. MR 783216 (87a:05023)
  • [8] R. Askey and J. Wimp, Associated Laguerre and Hermite polynomials, Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), 15-37. MR 741641 (85f:33014)
  • [9] W. N. Bailey, Generalized hypergeometric series, Cambridge Univ. Press, reprinted by Hafner, New York, 1972. MR 0185155 (32:2625)
  • [10] J. Bustoz and M. E. H. Ismail, The associated ultraspherical orthogonal polynomials and their $ q$-analogues, Canad. J. Math. 34 (1982), 718-736. MR 663314 (84c:33013)
  • [11] T. Chihara, On co-recursive orthogonal polynomials, Proc. Amer. Math. Soc. 8 (1957), 899-905. MR 0092015 (19:1047c)
  • [12] -, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • [13] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge Univ. Press, Cambridge, 1989. MR 2128719 (2006d:33028)
  • [14] M. E. H. Ismail, J. Letessier, and G. Valent, Linear birth and death models and associated Laguerre polynomials, J. Approx. Theory 56 (1988), 337-348. MR 968940 (89m:60204)
  • [15] M. E. H. Ismail, J. Letessier, G. Valent, and J. Wimp, Associated Wilson polynomials, Canad. J. Math. 42 (1990), 659-695. MR 1074229 (92b:33021)
  • [16] M. E. H. Ismail and D. Masson, Two families of orthogonal polynomials related to Jacobi polynomials, Rocky Mountain J. Math. 21 (1991) (to appear). MR 1113933 (93a:33018)
  • [17] M. E. H. Ismail and J. A. Wilson, Asymptotic and generating relations for the $ q$-Jacobi and $ _4{\phi _3}$ polynomials, J. Approx. Theory 36 (1982), 43-54. MR 673855 (84e:33012)
  • [18] W. Jones and W. Thron, Continued fractions, Cambridge Univ. Press, Cambridge, 1982.
  • [19] D. Masson, The rotating harmonic oscillator eigenvalue problem. I. Continued fractions and analytic continuation, J. Math. Physics 24 (1983), 2074-2088. MR 713540 (84m:81051a)
  • [20] -, Wilson polynomials and some continued fractions of Ramanujan, Rocky Mountain J. Math. 20 (1990) (to appear). MR 1113939 (92h:33015)
  • [21] B. Nassrallah and M. Rahman, Projection formulas, a reproducing kernel and a generating function for $ q$-Wilson polynomials, SIAM J. Math. Anal. 16 (1985), 186-197. MR 772878 (87b:33009)
  • [22] P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc., no. 213, Providence, R.I., 1979. MR 519926 (80k:42025)
  • [23] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1974. MR 0435697 (55:8655)
  • [24] M. Rahman and A. Verma, A $ q$-integral representation of Rogers' $ q$-ultraspherical polynomials and some applications, Constr. Approx. 2 (1986), 1-10. MR 891766 (88e:33011)
  • [25] M. Rahman, $ q$-Wilson function of the second kind, SIAM J. Math. Anal. 17 (1986), 1280-1286. MR 853530 (88c:33003)
  • [26] D. Sears, On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc. (2) 53 (1951), 158-180. MR 0041981 (13:33d)
  • [27] J. A. Shohat and J. D. Tamarkin, The problem of moments, rev. ed., Math. Surveys, vol. 1, Amer. Math. Soc., Providence, R.I., 1950. MR 0008438 (5:5c)
  • [28] L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966. MR 0201688 (34:1570)
  • [29] G. Szegö, Orthogonal polynomials, 4th ed., Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1975.
  • [30] J. Wilson, Hypergeometric series, recurrence relations and some orthogonal functions, Doctoral Dissertation, Univ. of Wisconsin, Madison, 1978.
  • [31] -, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980), 690-701. MR 579561 (82a:33014)
  • [32] J. Wimp, Computations with recurrence relations, Pitman, London, 1984. MR 727118 (85f:65001)
  • [33] -, Explicit formulas for the associated Jacobi polynomials and some applications, Canad. J. Math. 39 (1987), 983-1000. MR 915027 (88k:33023)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 33C50, 42C05

Retrieve articles in all journals with MSC: 33C50, 42C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1013333-4
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society