Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A representation theorem for cyclic analytic two-isometries


Author: Stefan Richter
Journal: Trans. Amer. Math. Soc. 328 (1991), 325-349
MSC: Primary 47B38; Secondary 31C25, 47A15
DOI: https://doi.org/10.1090/S0002-9947-1991-1013337-1
MathSciNet review: 1013337
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A bounded linear operator $ T$ on a complex separable Hilbert space $ \mathcal{H}$ is called a $ 2$-isometry if $ {T^{\ast 2}}{T^2} - 2{T^{ \ast }}T + I = 0$. We say that $ T$ is analytic if $ { \cap _{n> 0}}\,{T^n}\,\mathcal{H}= (0)$. In this paper we show that every cyclic analytic $ 2$-isometry can be represented as multiplication by $ z$ on a Dirichlet-type space $ D(\mu)$. Here $ \mu $ denotes a finite positive Borel measure on the unit circle. For two measures $ \mu $ and $ \nu $ the $ 2$-isometries obtained as multiplication by $ z$ on $ D(\mu)$ and $ D(\nu)$ are unitarily equivalent if and only if $ \mu = \nu $. We also investigate similarity and quasisimilarity of these $ 2$-isometries, and we apply our results to the invariant subspaces of the Dirichlet shift.


References [Enhancements On Off] (What's this?)

  • [1] J. Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112 (1990), 1-14. MR 1037599 (91b:47048)
  • [2] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94. MR 0068129 (16:835a)
  • [3] L. Brown and A. L. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984), 269-304. MR 748841 (86d:30079)
  • [4] L. Carleson, A representation formula for the Dirichlet integral, Math. Z. 73 (1960), 190-196. MR 0112958 (22:3803)
  • [5] M. J. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978), 187-261. MR 501368 (80f:47012)
  • [6] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. MR 0270173 (42:5066)
  • [7] P. Koosis, Introduction to $ {H^p}$-spaces, Cambridge Univ. Press, 1980. MR 565451 (81c:30062)
  • [8] S. Richter, Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc. 304 (1987), 585-616. MR 911086 (88m:47056)
  • [9] -, Invariant subspaces of the Dirichlet shift, J. Reine Angew. Math. 386 (1988), 205-220. MR 936999 (89e:47048)
  • [10] S. Richter and A. L. Shields, Bounded analytic functions in the Dirichlet space, Math. Z. 198 (1988), 151-159. MR 939532 (89c:46039)
  • [11 A] L. Shields, Weighted shift operators and analytic function theory, Math. Surveys, vol. 13, Amer. Math. Soc., Providence, RI, 1974. MR 0361899 (50:14341)
  • [12] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1971), 777-788. MR 0287352 (44:4558)
  • [13] G. D. Taylor, Multipliers on $ {D_\alpha }$, Trans. Amer. Math. Soc. 123 (1966), 229-240. MR 0206696 (34:6514)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B38, 31C25, 47A15

Retrieve articles in all journals with MSC: 47B38, 31C25, 47A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1013337-1
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society