Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Iteration of a composition of exponential functions


Author: Xiaoying Dong
Journal: Trans. Amer. Math. Soc. 328 (1991), 517-526
MSC: Primary 58F08; Secondary 30D05
DOI: https://doi.org/10.1090/S0002-9947-1991-1013329-2
MathSciNet review: 1013329
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for certain complex parameters $ {\lambda _1},\ldots,{\lambda _{n - 1}}$ and $ {\lambda _n}$ the Julia set of the function

$\displaystyle {e^{{\lambda _1}{e^{^{{.^{{.^{{.^{{{^{{\lambda _{n - 1}}}}^{{e^\lambda }^{_{{n^z}}}}}}}}}}}}}}}}$

is the whole plane $ \mathbb{C}$. We denote by $ \Lambda $ the set of $ n$-tuples $ ({\lambda _1},\ldots,{\lambda _n}),{\lambda _1},\ldots,{\lambda _n} \in \mathbb{R}$ for which the equation

$\displaystyle {e^{{\lambda _1}{e^{^{{.^{{.^{{.^{{{^{{\lambda _{n - 1}}}}^{{e^\lambda }^{_{{n^z}}}}}}}}}}}}}}}} - z= 0$

has exact two real solutions. In fact, one of them is an attracting fixed point of

$\displaystyle {e^{{\lambda _1}{e^{^{{.^{{.^{{.^{{{^{{\lambda _{n - 1}}}}^{{e^\lambda }^{_{{n^z}}}}}}}}}}}}}}}},$

which is denoted by $ q$. We also show that when $ ({\lambda _1},\ldots,{\lambda _n})\, \in \Lambda $, the Julia set of

$\displaystyle {e^{{\lambda _1}{e^{^{{.^{{.^{{.^{{{^{{\lambda _{n - 1}}}}^{{e^\lambda }^{_{{n^z}}}}}}}}}}}}}}}}$

is the complement of the basin of attraction of $ q$. The ideas used in this note may also be applicable to more general functions.

References [Enhancements On Off] (What's this?)

  • [1] I. N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252-256. MR 0226009 (37:1599)
  • [2] -, Limit functions and sets of nonnormality in iteration theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 467 (1970), 1-10.
  • [3] -, The iteration of polynomials and transcendental entire functions, J. Austral. Math. Soc. Ser. A 30 (1981), 483-495. MR 621564 (82g:30043)
  • [4] I. N. Baker and P. J. Rippon, Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 49-77. MR 752391 (86d:58065)
  • [5] R. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. 11 (1984), 167-171. MR 741732 (86b:58091)
  • [6] -, An introduction to chaotic dynamical systems, Benjamin/Cummings, 1986. MR 811850 (87e:58142)
  • [7] P. Fatou, Sur les equations fonctionelles, Bull. Soc. Math. France 47 (1919), 161-271. MR 1504787
  • [8] -, Sur les equations fonctionelles, Bull. Soc. Math. France 48 (1920), 33-94, 208-313. MR 1504792
  • [9] -, Sur l'itération des fonctions transcendantes entières, Acta Math. 47 (1926), 337-370. MR 1555220
  • [10] L. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynamical Systems 6 (1986), 183-192. MR 857196 (88b:58126)
  • [11] M. Misiurewicz, On iterates of $ {e^z}$, Ergodic Theory Dynamical Systems 1 (1981), 103-106. MR 627790 (82i:58058)
  • [12] D. L. Shell, On the convergence of infinite exponentials, Proc. Amer. Math. Soc. 13 (1962), 678-681. MR 0141910 (25:5307)
  • [13] W. J. Thron, Convergence of infinite exponentials with complex elements, Proc. Amer. Math. Soc. 8 (1957), 1040-1043. MR 0096054 (20:2552)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F08, 30D05

Retrieve articles in all journals with MSC: 58F08, 30D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1013329-2
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society