Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Heegaard diagrams of $ 3$-manifolds


Author: Mitsuyuki Ochiai
Journal: Trans. Amer. Math. Soc. 328 (1991), 863-879
MSC: Primary 57N10; Secondary 57M25
DOI: https://doi.org/10.1090/S0002-9947-1991-1020041-2
MathSciNet review: 1020041
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a $ 3$-manifold $ M(L)$ obtained by an integral Dehn surgery along an $ n$-bridge link $ L$ with $ n$-components we define a concept of planar Heegaard diagrams of $ M(L)$ using a link diagram of $ L$. Then by using Homma-Ochiai-Takahashi's theorem and a planar Heegaard diagram of $ M(L)$ we will completely determine if $ M(L)$ is the standard $ 3$-sphere in the case when $ L$ is a $ 2$-bridge link with $ 2$-components.


References [Enhancements On Off] (What's this?)

  • [1] J. S. Birman, Special Heegaard splittings for closed oriented $ 3$-manifolds, Topology 17 (1978), 157-166. MR 0482764 (58:2817)
  • [2] J. S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of $ {S^3}$, Trans. Amer. Math. Soc. 213 (1975), 315-352. MR 0380765 (52:1662)
  • [3] J. S. Birman and J. Powell, Special representations for $ 3$-manifolds, Proc. 1977 Georgia Topology Conf., edited by J. C. Cantrell, Academic Press New York-London, 1979, pp. 23-51. MR 537723 (80g:57010)
  • [4] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, 1980. MR 562913 (81a:20001)
  • [5] W. B. R. Lickorish, A representation of orientable combinatorial $ 3$-manifolds, Ann. of Math. 76 (1962), 531-540. MR 0151948 (27:1929)
  • [6] J. Hempel, Construction of orientable $ 3$-manifolds, Topology of $ 3$-Manifolds, edited by M. K. Fort, Prentice-Hall, 1962. MR 0140115 (25:3538)
  • [7] R. Kirby, A calculus for framed links in $ {S^3}$, Invent. Math. 45 (1978), 35-56. MR 0467753 (57:7605)
  • [8] O. Morikawa, A counterexample to a conjecture of Whitehead, Math. Sem. Notes Kobe Univ. 8 (1980), 295-298. MR 601897 (82h:57011)
  • [9] M. Ochiai, Dehn's surgery along $ 2$-bridge knots, Yokohama Math. J. 26 (1978), 69-75. MR 524884 (80d:57004)
  • [10] -, A Heegaard-diagram of the $ 3$-sphere, Osaka J. Math. 22 (1985), 871-873. MR 815455 (87a:57020)
  • [11] T. Homma, M. Ochiai, and M. Takahashi, An algorithm for recognizing $ {S^3}$ in $ 3$-manifolds with Heegaard splittings of genus two, Osaka J. Math. 17 (1980), 625-648. MR 591141 (82i:57013)
  • [12] D. Rolfsen, Knots and links, Publish or Perish, 1976. MR 0515288 (58:24236)
  • [13] H. Schubert, Knoten mit zwei Brucken, Math. Z. 65 (1956), 133-170. MR 0082104 (18:498e)
  • [14] O. Ja. Viro, The Volodin-Kuznetsov-Fomenko conjecture on Heegaard diagrams is false, Uspekhi Mat. Nauk 32 (1977), 175-176. MR 0467757 (57:7609)
  • [15] F. Waldhausen, Heegaard-Zerlegungen der $ 3$-Sphere, Topology 7 (1968), 195-203. MR 0227992 (37:3576)
  • [16] J. H. C. Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. (2) 41 (1936), 48-56.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N10, 57M25

Retrieve articles in all journals with MSC: 57N10, 57M25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1020041-2
Keywords: $ 3$-manifolds, Dehn surgery, $ n$-bridge link, Heegaard diagram
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society