Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

On lifting Hecke eigenforms


Author: Lynne H. Walling
Journal: Trans. Amer. Math. Soc. 328 (1991), 881-896
MSC: Primary 11F41; Secondary 11F27, 11F60
MathSciNet review: 1061779
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A classical Hilbert modular form $ f \in {\mathcal{M}_k}({\Gamma _0}(\mathcal{N},\mathcal{I}),{\chi _\mathcal{N}})$ cannot be an eigenform for the full Hecke algebra. We develop a means of lifting a classical form to a modular form $ F \in { \oplus _\lambda }{\mathcal{M}_k}({\Gamma _0}(\mathcal{N},{\mathcal{I}_\lambda }),{\chi _\mathcal{N}})$ which is an eigenform for the full Hecke algebra. Using this lift, we develop the newform theory for a space of cusp forms $ {\mathcal{S}_k}({\Gamma _0}(\mathcal{N},\mathcal{I}),{\chi _\mathcal{N}})$; we also use theta series to construct eigenforms for the full Hecke algebra.


References [Enhancements On Off] (What's this?)

  • [1] Martin Eichler, On theta functions of real algebraic number fields, Acta Arith. 33 (1977), no. 3, 269–292. MR 0563061 (58 #27788)
  • [2] Erich Hecke, Lectures on the theory of algebraic numbers, Graduate Texts in Mathematics, vol. 77, Springer-Verlag, New York-Berlin, 1981. Translated from the German by George U. Brauer, Jay R. Goldman and R. Kotzen. MR 638719 (83m:12001)
  • [3] Wen Ch’ing Winnie Li, Newforms and functional equations, Math. Ann. 212 (1975), 285–315. MR 0369263 (51 #5498)
  • [4] Andrew Ogg, Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0256993 (41 #1648)
  • [5] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, New York, 1973.
  • [6] T. R. Shemanske and L. H. Walling, Twists of Hilbert modular forms, submitted 1990.
  • [7] Goro Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), no. 3, 637–679. MR 507462 (80a:10043)
  • [8] Goro Shimura, The arithmetic of certain zeta functions and automorphic forms on orthogonal groups, Ann. of Math. (2) 111 (1980), no. 2, 313–375. MR 569074 (81g:10041), http://dx.doi.org/10.2307/1971202
  • [9] C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Gesammelte Abhandlungen, Springer-Verlag, New York, 1966, pp. 326-405.
  • [10] -, Über die analytische Theorie der quadratischen Formen III, Gesammelte Abhandlungen, Springer-Verlag, New York, 1966, pp. 469-548.
  • [11] Lynne H. Walling, Hecke operators on theta series attached to lattices of arbitrary rank, Acta Arith. 54 (1990), no. 3, 213–240. MR 1056106 (91h:11039)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F41, 11F27, 11F60

Retrieve articles in all journals with MSC: 11F41, 11F27, 11F60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1991-1061779-0
PII: S 0002-9947(1991)1061779-0
Keywords: Hilbert modular forms, newforms, theta series, quadratic forms
Article copyright: © Copyright 1991 American Mathematical Society