Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On lifting Hecke eigenforms


Author: Lynne H. Walling
Journal: Trans. Amer. Math. Soc. 328 (1991), 881-896
MSC: Primary 11F41; Secondary 11F27, 11F60
DOI: https://doi.org/10.1090/S0002-9947-1991-1061779-0
MathSciNet review: 1061779
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A classical Hilbert modular form $ f \in {\mathcal{M}_k}({\Gamma _0}(\mathcal{N},\mathcal{I}),{\chi _\mathcal{N}})$ cannot be an eigenform for the full Hecke algebra. We develop a means of lifting a classical form to a modular form $ F \in { \oplus _\lambda }{\mathcal{M}_k}({\Gamma _0}(\mathcal{N},{\mathcal{I}_\lambda }),{\chi _\mathcal{N}})$ which is an eigenform for the full Hecke algebra. Using this lift, we develop the newform theory for a space of cusp forms $ {\mathcal{S}_k}({\Gamma _0}(\mathcal{N},\mathcal{I}),{\chi _\mathcal{N}})$; we also use theta series to construct eigenforms for the full Hecke algebra.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F41, 11F27, 11F60

Retrieve articles in all journals with MSC: 11F41, 11F27, 11F60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1061779-0
Keywords: Hilbert modular forms, newforms, theta series, quadratic forms
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society