Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Regular points for ergodic Sinaĭ measures

Author: Masato Tsujii
Journal: Trans. Amer. Math. Soc. 328 (1991), 747-766
MSC: Primary 58F11
MathSciNet review: 1072103
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Ergodic properties of smooth dynamical systems are considered. A point is called regular for an ergodic measure $ \mu $ if it is generic for $ \mu $ and the Lyapunov exponents at it coincide with those of $ \mu $. We show that an ergodic measure with no zero Lyapunov exponent is absolutely continuous with respect to unstable foliation $ [$L$ ]$ if and only if the set of all points which are regular for it has positive Lebesgue measure.

References [Enhancements On Off] (What's this?)

  • [B] Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989
  • [GH] John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768
  • [K] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137–173. MR 573822
  • [KS] Anatole Katok, Jean-Marie Strelcyn, F. Ledrappier, and F. Przytycki, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics, vol. 1222, Springer-Verlag, Berlin, 1986. MR 872698
  • [HPS] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173
  • [L] F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, Inst. Hautes Études Sci. Publ. Math. 59 (1984), 163–188 (French). MR 743818
  • [M] Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254
  • [O] V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 0240280
  • [P1] Ya. B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Math. USSR-Izv. 10 (1976), no. 6, 1261-1305.
  • [P2] Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977), no. 4 (196), 55–112, 287 (Russian). MR 0466791
  • [PS] Charles Pugh and Michael Shub, Ergodic attractors, Trans. Amer. Math. Soc. 312 (1989), no. 1, 1–54. MR 983869, 10.1090/S0002-9947-1989-0983869-1
  • [R1] David Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 27–58. MR 556581
  • [R2] David Ruelle, Sensitive dependence on initial condition and turbulent behavior of dynamical systems, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 408–416. MR 556846

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F11

Retrieve articles in all journals with MSC: 58F11

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society