Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cesàro summability of double Walsh-Fourier series


Authors: F. Móricz, F. Schipp and W. R. Wade
Journal: Trans. Amer. Math. Soc. 329 (1992), 131-140
MSC: Primary 42C10; Secondary 42B08
DOI: https://doi.org/10.1090/S0002-9947-1992-1030510-8
MathSciNet review: 1030510
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce quasi-local operators (these include operators of Calderón-Zygmund type), a hybrid Hardy space $ {{\mathbf{H}}^\sharp }$ of functions of two variables, and we obtain sufficient conditions for a quasi-local maximal operator to be of weak type $ (\sharp ,1)$. As an application, we show that Cesàro means of the double Walsh-Fourier series of a function $ f$ converge a.e. when $ f$ belongs to $ {{\mathbf{H}}^\sharp }$. We also obtain the dyadic analogue of a summability result of Marcienkiewicz and Zygmund valid for all $ f \in {L^1}$ provided summability takes place in some positive cone.


References [Enhancements On Off] (What's this?)

  • [1] R. R. Coifman and G. Weiss, Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • [2] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. MR 0032833 (11:352b)
  • [3] -, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 558-591. MR 0070757 (17:31f)
  • [4] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132.
  • [5] F. Móricz and F. Schipp, On the integrability and $ {L^1}$-convergence of double Walsh series, Acta Math. Hungar. 57 (1991), 371-380. MR 1139331 (92m:42033)
  • [6] F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest Sect. Math. 18 (1975), 189-195. MR 0430665 (55:3670)
  • [7] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)
  • [8] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, N. J., 1975. MR 0487295 (58:6943)
  • [9] W. R. Wade, A growth estimate for Cesàro partial sums of multiple Walsh-Fourier series, Colloq. Math. Soc. J. Bolyai 49, Alfred Haar Memorial Conference, (Budapest, 1985), 975-991. MR 899590 (89f:42026)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42C10, 42B08

Retrieve articles in all journals with MSC: 42C10, 42B08


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1030510-8
Keywords: Walsh functions, Cesàro summability, quasi-local operators, operators of Calderón-Zygmund type, dyadic Hardy spaces
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society