A relationship between the Jones and Kauffman polynomials

Author:
Christopher King

Journal:
Trans. Amer. Math. Soc. **329** (1992), 307-323

MSC:
Primary 57M25

DOI:
https://doi.org/10.1090/S0002-9947-1992-1034666-2

MathSciNet review:
1034666

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A simple relationship is presented between the Kauffman polynomial of a framed link and the Jones polynomial of a derived link . The link is obtained by splitting each component of into two parallel strands, using the framing to determine the linking number of the strands. The relation is checked in several nontrivial examples, and a proof of the general result is given.

**[1]**V. F. R. Jones,*A polynomial invariant for knots via von Neumann algebras*, Bull. Amer. Math. Soc.**12**(1985), 103-110. MR**766964 (86e:57006)****[2]**L. H. Kauffman,*New invariants in the theory of knots*, Amer. Math. Monthly**95**(1988), 195-242;*On knots*, Ann. of Math. Stud., no. 115, Princeton Univ. Press, Princeton, N.J., 1987;*An invariant of regular isotopy*, Trans. Amer. Math. Soc.**318**(1990), 417-471. MR**935433 (89d:57005)****[3]**W. B. R. Lickorish,*A relationship between link polynomials*, Math. Proc. Cambridge Philos. Soc.**100**(1986), 109-112; L. H. Kauffman,*On knots*(see [2]). MR**838656 (87g:57010)****[4]**W. B. R. Lickorish and K. C. Millett,*The new polynomial invariants of knots and links*, Math. Mag.**61**(1988), 3-23. MR**934822 (89d:57006)****[5]**V. F. R. Jones,*Hecke algebra representations of braid groups and link polynomials*, Ann. of Math.**126**(1987), 335-388. MR**908150 (89c:46092)****[6]**T. Kohno,*Monodromy representations of braid groups and Yang-Baxter equations*, Ann. Inst. Fourier (Grenoble)**37**(1987), 139-160. MR**927394 (89h:17030)****[7]**V. G. Turaev,*The Yang-Baxter equation and invariants of links*, LOMI preprint E-3-87, Steklov Math. Inst. Leningrad, 1987. MR**939474 (89e:57003)****[8]**J. Fràhlich and C. King,*The Chern-Simons theory and knot polynomials*, Comm. Math. Phys.**126**(1989), 167-200. MR**1027918 (91e:57012)****[9]**E. Witten,*Quantum field theory and the Jones polynomial*, Comm. Math. Phys.**121**(1989), 351-400. MR**990772 (90h:57009)****[10]**V. G. Knizhnik and A. B. Zamolodchikov,*Current algebra and Wess-Zumino models in two dimensions*, Nuclear Phys.**B247**(1984), 83-103. MR**853258 (87h:81129)****[11]**J. Fràhlich and C. King,*Two-dimensional conformal field theory and three-dimensional topology*, Internat. J. Modem Phys. A**4**(1989), 5321-5400. MR**1028434 (91d:57003)****[12]**J. Birman and T. Kanenobu,*Jones' braid-plat formula and a new surgery triple*, Proc. Amer. Math. Soc.**102**(1988), 687-695. MR**929004 (89c:57003)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57M25

Retrieve articles in all journals with MSC: 57M25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1034666-2

Article copyright:
© Copyright 1992
American Mathematical Society