Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The duality between subsemigroups of Lie groups and monotone functions


Author: Karl-Hermann Neeb
Journal: Trans. Amer. Math. Soc. 329 (1992), 653-677
MSC: Primary 22E15; Secondary 22A15, 26A48
DOI: https://doi.org/10.1090/S0002-9947-1992-1024775-6
MathSciNet review: 1024775
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give a characterization of those convex cones $ W$ in the Lie algebra $ {\mathbf{L}}(G)$ of a connected Lie group $ G$ which are global in $ G$, i.e. for which there exists a closed subsemigroup $ S$ in $ G$ having $ W$ as its tangent wedge $ {\mathbf{L}}(S)$. The main result is the Characterization Theorem II.12. We also prove in Corollary II.6 that each germ of a strictly $ W$-positive function belongs to a global function if there exists at least one strictly $ W$-positive function. We apply the Characterization Theorem to obtain some general conditions for globality and to give a complete description of the global cones in compact Lie algebras.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Groupes et algèbres de Lie, Chapitre III, Hermann, Paris, 1971. MR 0271276 (42:6159)
  • [2] J. Dieudonné, Grundzüge der modernen Analysis, Band 3, Vieweg, 1976. MR 0515871 (58:24308)
  • [3] J. Faraut, Algèbres de Volterra et transformation de Laplace sphérique sur certains espaces symmétrique ordonnés, Sympos. Math. 29 (1987), 183-196. MR 951185 (90e:43006)
  • [4] G. B. Folland, Harmonic analysis in phase space, Princeton Univ. Press, Princeton, N.J., 1989. MR 983366 (92k:22017)
  • [5] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973. MR 0424186 (54:12154)
  • [6] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, London, 1978. MR 514561 (80k:53081)
  • [7] J. Hilgert, K. H. Hofmann, and J. D. Lawson, Lie groups, convex cones, and semigroups, Oxford Univ. Press, 1989. MR 1032761 (91k:22020)
  • [8] G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, Calif., 1965. MR 0207883 (34:7696)
  • [9] K. H. Hofmann, J. D. Lawson, and J. S. Pym (eds.), The analytic and topological theory of semigroups--trends and developments, De Gruyter, 1990. MR 1072781 (91e:22002)
  • [10] J. D. Lawson, Maximal subsemigroups of Lie groups that are total, Proc. Edinburgh Math. Soc. 87 (1987), 497-501. MR 908455 (89c:22042)
  • [11] G. I. Ol'shanskiĭ, Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series, Funct. Anal. Appl. 15 (1982), 275-285. MR 639200 (83e:32032)
  • [12] -, Invariant orderings in simple Lie groups. The solution to E. B. Vinberg's problem, Funct. Anal. Appl. 16 (1982), 311-313.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E15, 22A15, 26A48

Retrieve articles in all journals with MSC: 22E15, 22A15, 26A48


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1024775-6
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society