Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The duality between subsemigroups of Lie groups and monotone functions

Author: Karl-Hermann Neeb
Journal: Trans. Amer. Math. Soc. 329 (1992), 653-677
MSC: Primary 22E15; Secondary 22A15, 26A48
MathSciNet review: 1024775
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give a characterization of those convex cones $ W$ in the Lie algebra $ {\mathbf{L}}(G)$ of a connected Lie group $ G$ which are global in $ G$, i.e. for which there exists a closed subsemigroup $ S$ in $ G$ having $ W$ as its tangent wedge $ {\mathbf{L}}(S)$. The main result is the Characterization Theorem II.12. We also prove in Corollary II.6 that each germ of a strictly $ W$-positive function belongs to a global function if there exists at least one strictly $ W$-positive function. We apply the Characterization Theorem to obtain some general conditions for globality and to give a complete description of the global cones in compact Lie algebras.

References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Éléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I: Algèbres de Lie, Seconde édition. Actualités Scientifiques et Industrielles, No. 1285, Hermann, Paris, 1971 (French). MR 0271276
  • [2] J. Dieudonné, Grundzüge der modernen Analysis. Band 3, Vieweg, Braunschweig, 1976 (German). Translated from the second French edition by Herbert Gollek, Rolf Sulanke and Peter Wintgen; Logik und Grundlagen der Mathematik, 18. MR 0515871
  • [3] Jacques Faraut, Algèbres de Volterra et transformation de Laplace sphérique sur certains espaces symétriques ordonnés, Symposia Mathematica, Vol. XXIX (Cortona, 1984) Sympos. Math., XXIX, Academic Press, New York, 1987, pp. 183–196 (French). MR 951185
  • [4] Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366
  • [5] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London-New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1. MR 0424186
  • [6] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • [7] Joachim Hilgert, Karl Heinrich Hofmann, and Jimmie D. Lawson, Lie groups, convex cones, and semigroups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Oxford Science Publications. MR 1032761
  • [8] G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
  • [9] Karl Heinrich Hofmann, Jimmie D. Lawson, and John S. Pym (eds.), The analytical and topological theory of semigroups, De Gruyter Expositions in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1990. Trends and developments. MR 1072781
  • [10] Jimmie D. Lawson, Maximal subsemigroups of Lie groups that are total, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 3, 479–501. MR 908455,
  • [11] G. I. Ol′shanskiĭ, Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Funktsional. Anal. i Prilozhen. 15 (1981), no. 4, 53–66, 96 (Russian). MR 639200
  • [12] -, Invariant orderings in simple Lie groups. The solution to E. B. Vinberg's problem, Funct. Anal. Appl. 16 (1982), 311-313.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E15, 22A15, 26A48

Retrieve articles in all journals with MSC: 22E15, 22A15, 26A48

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society