Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Adams' cobar equivalence


Authors: Yves Félix, Stephen Halperin and Jean-Claude Thomas
Journal: Trans. Amer. Math. Soc. 329 (1992), 531-549
MSC: Primary 55P35; Secondary 55R20, 55T20
DOI: https://doi.org/10.1090/S0002-9947-1992-1036001-2
MathSciNet review: 1036001
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be the homotopy fibre of a continuous map $ Y\xrightarrow{\omega }X$, with $ X$ simply connected. We modify and extend a construction of Adams to obtain equivalences of DGA's and DGA modules,

$\displaystyle \Omega {C_{\ast}}(X)\xrightarrow{ \simeq }C{U_{\ast}}(\Omega X),$

and

$\displaystyle \Omega (C_{\ast}^\omega (Y);{C_{\ast}}(X))\xrightarrow{ \simeq }C{U_{\ast}}(F),$

where on the left-hand side $ \Omega ( - )$ denotes the cobar construction. Our equivalences are natural in $ X$ and $ \omega $. Using this result we show how to read off the algebra $ {H_{\ast}}(\Omega X;R)$ and the $ {H_{\ast}}(\Omega X;R)$ module, $ {H_{\ast}}(F;R)$, from free models for the singular cochain algebras $ C{S^{\ast}}(X)$ and $ C{S^{\ast}}(Y)$; here we assume $ R$ is a principal ideal domain and $ X$ and $ Y$ are of finite $ R$ type.

References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 409-412. MR 0079266 (18:59c)
  • [2] J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1955), 305-330. MR 0077929 (17:1119b)
  • [3] L. Avramov and S. Halperin, Through the looking glass: a dictionary between rational homotopy theory and local algebra, Algebra, Algebraic Topology and Their Interactions, Lecture Notes in Math., vol. 1183, Springer-Verlag, Berlin and New York, 1986, pp. 3-27. MR 846435 (87k:55015)
  • [4] S. Eilenberg and J. C. Moore, Homology and fibrations, Comment. Math. Helv. 40 (1966), 199-236. MR 0203730 (34:3579)
  • [5] Y. Félix, S. Halperin, and J. C. Thomas, Gorenstein spaces, Adv. Math. 71 (1988), 92-112. MR 960364 (89k:55019)
  • [6] Y. Félix and J. C. Thomas, Module d'holonomie d'une fibration, Bull. Soc. Math. France 113 (1985), 255-258. MR 834038 (87i:55022)
  • [7] S. Halperin and J. M. Lemaire, Notions of category in differential algebra, Algebraic Topology: Rational Homotopy, Lecture Notes in Math., vol. 1318, Springer-Verlag, Berlin and New York, 1988, pp. 138-153. MR 952577 (89h:55023)
  • [8] D. Husemoller, J. C. Moore, and J. Stasheff, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974), 113-185. MR 0365571 (51:1823)
  • [9] J. C. Moore, Algèbre homologique et homologie des espaces classifiants, exposé no. 7, Seminaire H. Cartan, 1959/1960.
  • [10] -, Differential homological algebras, Proc. Internat. Congr. Math., vol. 1, 1970, pp. 1-5.
  • [11] J. P. Serre, Homologie singulière des espaces fibrés, applications, Ann. of Math. 54 (1951), 425-505. MR 0045386 (13:574g)
  • [12] J. D. Stasheff, "Parallel" transport in fibre spaces, Bol. Soc. Mat. Mexicana (2) 11 (1966), 68-74. MR 0236926 (38:5219)
  • [13] -, Associated fibre spaces, Michigan Math. J. 15 (1968), 457-470. MR 0248833 (40:2083)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P35, 55R20, 55T20

Retrieve articles in all journals with MSC: 55P35, 55R20, 55T20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1036001-2
Keywords: Cobar construction, homotopy fiber, free model, Eilenberg-Moore spectral sequence
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society