Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the symmetric square: applications of a trace formula


Author: Yuval Z. Flicker
Journal: Trans. Amer. Math. Soc. 330 (1992), 125-152
MSC: Primary 11F70; Secondary 11F72, 22E50, 22E55
DOI: https://doi.org/10.1090/S0002-9947-1992-1041045-0
MathSciNet review: 1041045
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the existence of the symmetric-square lifting of admissible and of automorphic representations from the group $ {\text{SL}}(2)$ to the group $ {\text{PGL}}(3)$. Complete local results are obtained, relating the character of an $ {\text{SL}}(2)$-packet with the twisted character of self-contragredient $ {\text{PGL}}(3)$-modules. Our global results relate packets of cuspidal representations of $ {\text{SL}}(2)$ with a square-integrable component, and self-contragredient automorphic $ {\text{PGL}}(3)$-modules with a component coming from a square-integrable one. The sharp results, which concern $ {\text{SL}}(2)$ rather than $ {\text{GL}}(2)$, are afforded by the usage of the trace formula. The surjectivity and injectivity of the correspondence implies that any self-contragredient automorphic $ {\text{PGL}}(3)$-module as above is a lift, and that the space of cuspidal $ {\text{SL}}(2)$-modules with a square-integrable component admits multiplicity one theorem and rigidity ("strong multiplicity one") theorem for packets (and not for individual representations). The techniques of this paper, based on the usage of regular functions to simplify the trace formula, are pursued in the sequel [VI] to extend our results to all cuspidal $ {\text{SL}}(2)$-modules and self-contragredient $ {\text{PGL}}(3)$-modules


References [Enhancements On Off] (What's this?)

  • [BZ] J. Bernstein and A. Zelevinsky, Induced representations of reductive $ p$-adic groups, Ann. Sci. Ecole Norm Sup. 10 (1977), 441-472. MR 0579172 (58:28310)
  • [B] A. Borel, Automorphic $ L$-functions, Proc. Sympos. Pure Math. vol. 33, part II, Amer. Math. Soc., Providence, R. I., 1979, pp. 27-63. [ $ {\text{B}}^{\prime}$] Admissible representations with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233-259. MR 546608 (81m:10056)
  • [BJ] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Proc. Sympos. Pure Math., vol. 33, part I, Amer. Math. Soc., Providence, R. I., 1979, pp. 189-208. MR 546598 (81m:10055)
  • [C] W. Casselman, Characters and Jacquet modules, Math. Ann. 230 (1977), 101-105; see also: P. Deligne, Le support du caractère d'une represéntation supercuspidale, C. R. Acad. Sci. Paris 283 (1976), 155-157. MR 0492083 (58:11237)
  • [Cl] L. Clozel, Characters of non-connected, reductive $ p$-adic groups, Canad. J. Math. 39 (1987), 149-167. MR 889110 (88i:22039)
  • [CL] L. Clozel, J. P. Labesse, and R. Langlands, Seminar at IAS, Princeton, N. J., 1984.
  • [F] Y. Flicker, [ $ {\text{F}_0}$]: The trace formula and base change for $ {\text{GL}}(3)$, Lecture Notes in Math., vol. 927, Springer, 1982; [ $ {\text{F}_1}$]: The adjoint lifting from $ {\text{SL}}(2)$ to $ {\text{PGL}}(3)$, IHES preprint series, 1981; [ $ {\text{F}_2}$]: Outer automorphisms and instability, Théorie de Nombres, Paris 1980-81, Progress in Math., vol. 22, Birkhäuser, 1982; [ $ {\text{F}_3}$]: Stable base change for spherical functions, Nagoya Math. J. 106 (1987), 121-142; [ $ {\text{F}_5}$]: Regular trace formula and base-change lifting, Amer. J. Math. 110 (1988), 739-764; [ $ {\text{F}_6}$]: Regular trace formula and base-change for $ {\text{GL}}(n)$, Ann. Inst. Fourier 40 (1990), 1-30. MR 663002 (84d:10035)
  • [F$ ^\prime$] -, [ $ {{\text{F}}^{\prime}_0}$]: Rigidity for automorphic forms, J. Analyse Math. 49 (1987), 135-202; [ $ {{\text{F}}_4}$]: Stable and labile base-change for $ U(2)$, Duke Math. J. 49 (1982), 691-729; [ $ {{\text{F}}^{\prime}_1}$]: $ L$-packets and liftings for $ U(3)$, (Unpublished, Princeton, N. J., 1982); [ $ {{\text{F}}^{\prime}_2}$]: Unitary quasi-lifting: preparations, Contemp. Math., vol. 53, Amer. Math. Soc., Providence, R.I., 1986, pp. 119-139; [ $ {{\text{F}}^{\prime}_3}$]: Unitary quasi-lifting: applications, Trans. Amer. Math. Soc. 294 (1986), 553-565; [ $ {{\text{F}}^{\prime}_4}$]: Packets and liftings for $ U(3)$, J. Analyse Math. 50 (1988), 19-63; [ $ {{\text{F}}^{\prime}_5}$]: Base change trace identity for $ U(3)$, J. Analyse Math. 52 (1989), 39-52. MR 928510 (89a:11057)
  • [I-VI] -, On the symmetric square, [I]: Orbital integrals, Math. Ann. 279 (1987), 173-191; [II]: Definitions and lemmas, Trans. Amer. Math. Soc. 330 (1992), 111-124. [III]: Twisted trace formula, J. Funct. Anal. 98 (1990), 194-210; [IV]: Applications of a trace formula, Trans. Amer. Math. Soc. 330 (1992), 125-152. [V]: (with D. Kazhdan), Unstable local transer, Invent. Math. 91 (1988), 493-504; [VI]: Total global comparison, preprint. MR 919500 (89e:22016)
  • [FK] Y. Flicker and D. Kazhdan, Metaplectic correspondence, Publ. Math. IHES 64 (1987), 53-110. MR 876160 (88d:11049)
  • [GJ] S. Gelbart and H. Jacquet, A relation between automorphic representation of $ {\text{GL}}(2)$ and $ {\text{GL}}(3)$, Ann. Sci. Ecole Norm. Sup. 11 (1978), 471-541. MR 533066 (81e:10025)
  • [H] Harish-Chandra, Admissible invariant distributions on reductive $ p$-adic groups, Queen's Papers in Pure and Appl. Math. 48 (1978), 281-346. MR 0579175 (58:28313)
  • [JL] H. Jacquet and R. Langlands, Automorphic form on $ {\text{GL}}(2)$, Lecture Notes in Math., vol. 114, Springer, Berlin and New York, 1970. MR 0401654 (53:5481)
  • [JS] H. Jacquet and J. Shalika, On Euler products and the classification of automorphic forms II, Amer. J. Math. 103 (1981), 777-815. MR 623137 (82m:10050b)
  • [J] D. Joyner, On twisted orbital integral identities for $ {\text{PGL}}(3)$ over a $ p$-adic field, Canad. J. Math. 42 (1990), 1098-1130. MR 1099460 (92d:22026)
  • [K] D. Kazhdan, Cuspidal geometry on $ p$-adic groups, J. Analyse Math. 47 (1986), 1-36; [ $ {\text{K}}^{\prime}$]: On lifting, Lie Groups Representations. II, Lecture Notes in Math., vol. 1041, Springer, 1984, pp. 209-249; [ $ {\text{K}}''$]: Representations of groups over close local fields, J. Analyse Math. 47 (1986), 175-179. MR 874042 (88g:22017)
  • [LL] J. P. Labesse and R. Langlands, $ L$-indistinguishability for $ {\text{SL}}(2)$, Canad, J. Math. 31, (1979), 726-785. MR 540902 (81b:22017)
  • [L] R. Langlands, Base change for $ {\text{GL}}(2)$, Ann. of Math. Stud., no. 96, Princeton Univ. Press, 1980; [ $ {{\text{L}}_1}$]: Les debuts d'une formule des traces stable, Publ. Math. Univ. Paris VII 13 (1980). MR 574808 (82a:10032)
  • [Sh] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975), 79-95. MR 0382176 (52:3064)
  • [St] R. Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Math., vol. 366, Springer, Berlin and New York, 1974. MR 0352279 (50:4766)
  • [Vo] D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), 75-98. MR 0506503 (58:22205)
  • [Z] A. Zelevinsky, Induced representations of reductive $ p$-adic groups. II, Ann. Sci. Ecole Norm. Sup. 13 (1980), 165-210. MR 584084 (83g:22012)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F70, 11F72, 22E50, 22E55

Retrieve articles in all journals with MSC: 11F70, 11F72, 22E50, 22E55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1041045-0
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society