Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the symmetric square: definitions and lemmas


Author: Yuval Z. Flicker
Journal: Trans. Amer. Math. Soc. 330 (1992), 111-124
MSC: Primary 11F70; Secondary 22E50
DOI: https://doi.org/10.1090/S0002-9947-1992-1041046-2
MathSciNet review: 1041046
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define the symmetric square lifting for admissible and automorphic representations, from the group $ H = {H_0} = {\text{SL}}(2)$, to the group $ G = {\text{PGL}}(3)$, and derive its basic properties. This lifting is defined by means of Shintani character relations. The definition is suggested by the computation of orbital integrals (stable and unstable) in our On the symmetric square: Orbital integrals, Math. Ann. 279 (1987), 173-193. It is compatible with dual group homomorphisms $ {\lambda _0}:\widehat{H} \to \widehat{G}$ and $ {\lambda _1}:{\widehat{H}_1} \to \widehat{G}$, where $ {H_1} = {\text{PGL}}(2)$. The lifting is proven for induced, trivial and special representations, and both spherical functions and orthogonality relations of characters are studied.


References [Enhancements On Off] (What's this?)

  • [B] A. Borel, Automorphic $ L$-functions, Proc. Sympos. Pure Math., vol. 33, part II, Amer. Math. Soc., Providence, R. I., 1979, pp. 27-63. MR 546608 (81m:10056)
  • [BZ] J. Bernstein and A. Zelevinsky, Induced representations of reductive $ p$-adic groups, Ann. Sci. École Norm. Sup. 10 (1977), 441-472. MR 0579172 (58:28310)
  • [Cl] L. Clozel, Characters of non-connected, reductive $ p$-adic groups, Canad. J. Math. 39 (1987), 149-167. MR 889110 (88i:22039)
  • [F] Y. Flicker, Rigidity for automorphic forms, J. Analyse Math. 49 (1987), 135-202. MR 928510 (89a:11057)
  • [I] -, On the symmetric-square: Orbital integrals, Math. Ann. 279 (1987), 173-191. MR 919500 (89e:22016)
  • [III] -, On the symmetric-square: Twisted trace formula, J. Funct. Anal. 98 (1991), 194-210. MR 1111198 (92g:11050)
  • [IV] -, On the symmetric-square: Applications of a trace formula, Trans. Amer. Math. Soc. 330 (1992), 127-156. MR 1041045 (92g:11052)
  • [V] Y. Flicker and D. Kazhdan, On the symmetric-square: Unstable local transfer, Invent. Math. 91 (1988), 493-504. MR 928494 (89e:11031)
  • [VI] -, On the symmetric-square: Total global comparison, preprint.
  • [H] Harish-Chandra, Admissible invariant distributions on reductive $ p$-adic groups, Queen's Papers in Pure and Appl. Math. 48 (1978), 281-346. MR 0579175 (58:28313)
  • [H$ ^\prime$] -, Harmonic analysis on reductive $ p$-adic groups, Lecture Notes in Math., vol. 162, Springer-Verlag, Berlin and New York, 1970. MR 0414797 (54:2889)
  • [JL] H. Jacquet and R. Langlands, Automorphic forms on $ {\text{GL}}(2)$, Lecture Notes in Math., vol. 114, Springer-Verlag, Berlin and New York, 1970. MR 0401654 (53:5481)
  • [K] D. Kazhdan, Cuspidal geometry of $ p$-adic groups, J. Analyse Math. 47 (1986), 1-36. MR 874042 (88g:22017)
  • [LL] J.-P. Labesse and R. Langlands, $ L$-indistinguishability for $ {\text{SL}}(2)$, Canad. J. Math. 31 (1979), 726-785. MR 540902 (81b:22017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F70, 22E50

Retrieve articles in all journals with MSC: 11F70, 22E50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1041046-2
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society