factors, their bimodules and hypergroups

Author:
V. S. Sunder

Journal:
Trans. Amer. Math. Soc. **330** (1992), 227-256

MSC:
Primary 46L35; Secondary 20N99, 43A62, 46L10, 46L55

MathSciNet review:
1049618

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we introduce a notion that we call a hypergroup; this notion captures the natural algebraic structure possessed by the set of equivalence classes of irreducible bifinite bimodules over a II factor. After developing some basic facts concerning bimodules over II factors, we discuss abstract hypergroups. To make contact with the problem of what numbers can arise as index-values of subfactors of a given II factor with trivial relative commutant, we define the notion of a dimension function on a hypergroup, and prove that every finite hypergroup admits a unique dimension function, we then give some nontrivial examples of hypergroups, some of which are related to the Jones subfactors of index . In the last section, we study the hypergroup invariant corresponding to a bifinite module, which is used, among other things, to obtain a transparent proof of a strengthened version of what Ocneanu terms 'the crossed-product remembering the group.'

**[BS]**R. B. Bapat and V. S. Sunder,*On hypergroups of matrices*, Linear and Multilinear Algebra**29**(1991), no. 2, 125–140. MR**1119446**, 10.1080/03081089108818063**[C]**A. Connes,*Correspondences*, hand-written notes.**[DR]**Sergio Doplicher and John E. Roberts,*Duals of compact Lie groups realized in the Cuntz algebras and their actions on 𝐶*-algebras*, J. Funct. Anal.**74**(1987), no. 1, 96–120. MR**901232**, 10.1016/0022-1236(87)90040-1**[J]**V. F. R. Jones,*Index for subfactors*, Invent. Math.**72**(1983), no. 1, 1–25. MR**696688**, 10.1007/BF01389127**[MP]**J. R. McMullen and J. F. Price,*Reversible hypergroups*, Rend. Sem. Mat. Fis. Milano**47**(1977), 67–85 (1979) (English, with Italian summary). MR**526875**, 10.1007/BF02925743**[O]**A. Ocneanu,*Subalgebras are canonically fixed-point algebras*, Amer. Math. Soc. Abstracts**6**(1986), 822-99-165.**[O]**-,*A Galois theory for von Neumann algebras*, preprint 1985.**[O]**-,*Quantized groups, string algebras and Galois theory for operator algebras*, Operator Algebras and Applications, Vol. 2 (Warwick 1987), LMS Lecture Notes Ser., vol. 136, Cambridge Univ. Press, 1988, pp. 119-172.**[PP]**Mihai Pimsner and Sorin Popa,*Entropy and index for subfactors*, Ann. Sci. École Norm. Sup. (4)**19**(1986), no. 1, 57–106. MR**860811****[P]**Sorin Popa,*A short proof of “injectivity implies hyperfiniteness” for finite von Neumann algebras*, J. Operator Theory**16**(1986), no. 2, 261–272. MR**860346****[R]**Kenneth A. Ross,*Hypergroups and centers of measure algebras*, Symposia Mathematica, Vol. XXII (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, INDAM, Rome, 1976) Academic Press, London, 1977, pp. 189–203. MR**0511036****[W]**H. Wenzl,*Representations of Hecke algebras and subfactors*, Thesis, Univ. of Pennsylvania, 1985.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46L35,
20N99,
43A62,
46L10,
46L55

Retrieve articles in all journals with MSC: 46L35, 20N99, 43A62, 46L10, 46L55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1049618-6

Article copyright:
© Copyright 1992
American Mathematical Society