A local Weyl's law, the angular distribution and multiplicity of cusp forms on product spaces

Authors:
Jonathan Huntley and David Tepper

Journal:
Trans. Amer. Math. Soc. **330** (1992), 97-110

MSC:
Primary 11F72; Secondary 11F55

DOI:
https://doi.org/10.1090/S0002-9947-1992-1053114-X

MathSciNet review:
1053114

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite volume symmetric space with the product of half planes. Let be the Laplacian on the th half plane, and assume that we have a cusp form , so we have for . Let and let

**Theorem 1**.

**Theorem 2**.

**[D1]**Harold Donnelly,*On the cuspidal spectrum for finite volume symmetric spaces*, J. Differential Geom.**17**(1982), no. 2, 239–253. MR**664496****[D2]**Harold Donnelly,*Eigenvalue estimates for certain noncompact manifolds*, Michigan Math. J.**31**(1984), no. 3, 349–357. MR**767614**, https://doi.org/10.1307/mmj/1029003079**[E1]**I. Efrat,*Selberg trace formulas, rigidity and Weyl's law*, Ph.D. Thesis, New York Univ., 1981.**[E2]**-,*The Selberg trace formula for*, Mem. Amer. Math. Soc., No. 359 (1987).**[Hu]**Jonathan Huntley,*Spectral multiplicity on products of hyperbolic spaces*, Proc. Amer. Math. Soc.**111**(1991), no. 1, 1–12. MR**1031667**, https://doi.org/10.1090/S0002-9939-1991-1031667-X**[Ku]**Stephen S. Kudla,*Relations between automorphic forms produced by theta-functions*, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1977, pp. 277–285. Lecture Notes in Math., Vol. 627. MR**0480343****[L-P]**P. Lax and R. Philips,*Scattering theory for automorphic forms*, Princeton Univ. Press, Princeton, N.J., 1974.**[M]**W. Müller,*The trace class conjecture in the theory of automorphic forms*, preprint.**[Ro]**Walter Roelcke,*Über die Wellengleichung bei Grenzkreisgruppen erster Art*, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl.**1953/1955**(1953/1955), 159–267 (1956) (German). MR**0081967****[Sel]**A. Selberg,*Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series*, J. Indian Math. Soc. (N.S.)**20**(1956), 47–87. MR**0088511****[Ser]**Jean-Pierre Serre,*Abelian 𝑙-adic representations and elliptic curves*, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0263823**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11F72,
11F55

Retrieve articles in all journals with MSC: 11F72, 11F55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1053114-X

Article copyright:
© Copyright 1992
American Mathematical Society