Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A local Weyl's law, the angular distribution and multiplicity of cusp forms on product spaces

Authors: Jonathan Huntley and David Tepper
Journal: Trans. Amer. Math. Soc. 330 (1992), 97-110
MSC: Primary 11F72; Secondary 11F55
MathSciNet review: 1053114
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma /\mathcal{H}$ be a finite volume symmetric space with $ \mathcal{H}$ the product of half planes. Let $ {\Delta _i}$ be the Laplacian on the $ i$th half plane, and assume that we have a cusp form $ \phi $, so we have $ {\Delta _i}\phi = {\lambda _i}\phi $ for $ i = 1,2, \ldots,n$. Let $ \vec \lambda = ({\lambda _1}, \ldots,{\lambda _n})$ and let

$\displaystyle R = \sqrt {r_1^2 + \cdots + r_n^2} $

with $ r_i^2 + \frac{1} {4} = {\lambda _i}$. Letting $ \vec r = ({r_1}, \ldots,{r_n})$, we let $ M(\vec r)$ denote the dimension of the space of cusp forms with eigenvalue $ \vec \lambda $. More generally, let $ M(\vec r,a)$ denote the number of independent eigenfunctions such that the $ \vec r$ associated to an eigenfunction is inside the ball of radius $ a$, centered at $ \vec r$. We will define a function $ f(\vec r)$, which is generally equal to a linear sum of products of the $ {r_i}$. We prove the following theorems.

Theorem 1.

$\displaystyle M(\vec r) = O\left(\frac{f(\vec r)} {(\log R)^n} \right). $

Theorem 2.

$\displaystyle M (\vec{r}, A) = 2^n f(\vec{r})+O\left(\frac{f(\vec r)}{\log R} \right). $

References [Enhancements On Off] (What's this?)

  • [D1] H. Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Differential Geom. 11 (1982), 239-255. MR 664496 (83m:58079)
  • [D2] -, Eigenvalue estimates for certain noncompact manifolds, Michigan Math. J. 31 (1984), 349-357. MR 767614 (86d:58120)
  • [E1] I. Efrat, Selberg trace formulas, rigidity and Weyl's law, Ph.D. Thesis, New York Univ., 1981.
  • [E2] -, The Selberg trace formula for $ {(PS{L_2}(R))^n}$, Mem. Amer. Math. Soc., No. 359 (1987).
  • [Hu] J. Huntley, Spectral multiplicity on products of hyperbolic spaces, Proc. Amer. Math. Soc. 111 (1991), 1-12. MR 1031667 (91d:11055)
  • [Ku] S. Kudle, Relations between automorphic forms produced by theta functions, Lecture Notes in Math., vol. 627, Springer-Verlag, New York, 1977. MR 0480343 (58:516)
  • [L-P] P. Lax and R. Philips, Scattering theory for automorphic forms, Princeton Univ. Press, Princeton, N.J., 1974.
  • [M] W. Müller, The trace class conjecture in the theory of automorphic forms, preprint.
  • [Ro] W. Roelcke, Über die Wellengeleichung bei Grenzkreisgruppen erster Art, S. B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1953/1955 (1956), 159-267. MR 0081967 (18:476d)
  • [Sel] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemann spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. MR 0088511 (19:531g)
  • [Ser] J. Serre, Abelian $ L$-adic representations and elliptic curves, Benjamin, New York, 1968. MR 0263823 (41:8422)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F72, 11F55

Retrieve articles in all journals with MSC: 11F72, 11F55

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society