Motion of level sets by mean curvature. II

Authors:
L. C. Evans and J. Spruck

Journal:
Trans. Amer. Math. Soc. **330** (1992), 321-332

MSC:
Primary 58E99; Secondary 35K55, 53A07, 58G11

MathSciNet review:
1068927

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new proof of short time existence for the classical motion by mean curvature of a smooth hypersurface. Our method consists in studying a fully nonlinear uniformly parabolic equation satisfied by the signed distance function to the surface

**[1]**L. Caffarelli, L. Nirenberg, and J. Spruck,*The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian*, Acta Math.**155**(1985), no. 3-4, 261–301. MR**806416**, 10.1007/BF02392544**[2]**Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto,*Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations*, J. Differential Geom.**33**(1991), no. 3, 749–786. MR**1100211****[3]**L. C. Evans and J. Spruck,*Motion of level sets by mean curvature. I*, J. Differential Geom.**33**(1991), no. 3, 635–681. MR**1100206****[4]**M. Gage and R. S. Hamilton,*The heat equation shrinking convex plane curves*, J. Differential Geom.**23**(1986), no. 1, 69–96. MR**840401****[5]**Richard S. Hamilton,*Three-manifolds with positive Ricci curvature*, J. Differential Geom.**17**(1982), no. 2, 255–306. MR**664497****[6]**O. A. Ladyzhenskaja, V. A. Solonnikov, and N. N. Ural'tseva,*Linear and quasilinear equations of parabolic type*, Amer. Math. Soc., Providence, R.I., 1968.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58E99,
35K55,
53A07,
58G11

Retrieve articles in all journals with MSC: 58E99, 35K55, 53A07, 58G11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1068927-8

Article copyright:
© Copyright 1992
American Mathematical Society