Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Motion of level sets by mean curvature. II


Authors: L. C. Evans and J. Spruck
Journal: Trans. Amer. Math. Soc. 330 (1992), 321-332
MSC: Primary 58E99; Secondary 35K55, 53A07, 58G11
DOI: https://doi.org/10.1090/S0002-9947-1992-1068927-8
MathSciNet review: 1068927
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new proof of short time existence for the classical motion by mean curvature of a smooth hypersurface. Our method consists in studying a fully nonlinear uniformly parabolic equation satisfied by the signed distance function to the surface


References [Enhancements On Off] (What's this?)

  • [1] L. A. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations. III: Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261-301 MR 806416 (87f:35098)
  • [2] Y.-G Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geometry 33 (1991), 749-786. MR 1100211 (93a:35093)
  • [3] L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geometry 33 (1991), 635-681. MR 1100206 (92h:35097)
  • [4] M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), 69-96. MR 840401 (87m:53003)
  • [5] R. S. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306. MR 664497 (84a:53050)
  • [6] O. A. Ladyzhenskaja, V. A. Solonnikov, and N. N. Ural'tseva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, R.I., 1968.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E99, 35K55, 53A07, 58G11

Retrieve articles in all journals with MSC: 58E99, 35K55, 53A07, 58G11


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1068927-8
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society