Motion of level sets by mean curvature. II

Authors:
L. C. Evans and J. Spruck

Journal:
Trans. Amer. Math. Soc. **330** (1992), 321-332

MSC:
Primary 58E99; Secondary 35K55, 53A07, 58G11

DOI:
https://doi.org/10.1090/S0002-9947-1992-1068927-8

MathSciNet review:
1068927

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new proof of short time existence for the classical motion by mean curvature of a smooth hypersurface. Our method consists in studying a fully nonlinear uniformly parabolic equation satisfied by the signed distance function to the surface

**[1]**L. A. Caffarelli, L. Nirenberg, and J. Spruck,*The Dirichlet problem for nonlinear second order elliptic equations*. III:*Functions of the eigenvalues of the Hessian*, Acta Math.**155**(1985), 261-301 MR**806416 (87f:35098)****[2]**Y.-G Chen, Y. Giga, and S. Goto,*Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations*, J. Differential Geometry**33**(1991), 749-786. MR**1100211 (93a:35093)****[3]**L. C. Evans and J. Spruck,*Motion of level sets by mean curvature*. I, J. Differential Geometry**33**(1991), 635-681. MR**1100206 (92h:35097)****[4]**M. Gage and R. S. Hamilton,*The heat equation shrinking convex plane curves*, J. Differential Geom.**23**(1986), 69-96. MR**840401 (87m:53003)****[5]**R. S. Hamilton,*Three manifolds with positive Ricci curvature*, J. Differential Geom.**17**(1982), 255-306. MR**664497 (84a:53050)****[6]**O. A. Ladyzhenskaja, V. A. Solonnikov, and N. N. Ural'tseva,*Linear and quasilinear equations of parabolic type*, Amer. Math. Soc., Providence, R.I., 1968.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58E99,
35K55,
53A07,
58G11

Retrieve articles in all journals with MSC: 58E99, 35K55, 53A07, 58G11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1068927-8

Article copyright:
© Copyright 1992
American Mathematical Society