Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Ramsey theory in noncommutative semigroups


Authors: Vitaly Bergelson and Neil Hindman
Journal: Trans. Amer. Math. Soc. 330 (1992), 433-446
MSC: Primary 03E05; Secondary 05D10, 22A15, 54H15, 54H20
DOI: https://doi.org/10.1090/S0002-9947-1992-1069744-5
MathSciNet review: 1069744
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By utilizing ultrafilters we give a general version of the Central Sets Theorem [$ 6$, Proposition 8.21]. This enables us to derive noncommutative versions of van der Waerden's Theorem and several of its generalizations. We also derive some standard results, including the Hales-Jewett Theorem.


References [Enhancements On Off] (What's this?)

  • [1] V. Bergelson, H. Furstenberg, N. Hindman, and Y. Katznelson, An algebraic proof of van der Waerden's theorem, Enseign. Math. 35 (1989), 209-215. MR 1039944 (91g:11010)
  • [2] V. Bergelson and N. Hindman, Nonmetrizable topological dynamics and Ramsey theory, Trans. Amer. Math. Soc. 320 (1990), 293-320. MR 982232 (90k:03046)
  • [3] T. Carlson and S. Simpson, A dual form of Ramsey's theorem, Adv. in Math. 53 (1984), 265-290. MR 753869 (85h:04002)
  • [4] W. Deuber, Partitionen und lineare Gleichungssysteme, Math. Z. 133 (1973), 109-123. MR 0325406 (48:3753)
  • [5] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969. MR 0267561 (42:2463)
  • [6] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, Princeton, N.J., 1981. MR 603625 (82j:28010)
  • [7] H. Furstenberg and B. Weiss, Topological dynamics and combinatorial number theory, J. Analyse Math. 34 (1978), 61-85. MR 531271 (80g:05009)
  • [8] S. Glasner, Divisible properties and the Stone-Čech compactification, Canad. J. Math. 32 (1980), 993-1007. MR 590662 (82a:54040)
  • [9] R. Graham, K. Leeb, and B. Rothschild, Ramsey's Theorem for a class of categories, Adv. in Math. 8 (1972), 417-433. MR 0306010 (46:5137b)
  • [10] A. Hales and R. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229. MR 0143712 (26:1265)
  • [11] N. Hindman, Ultrafilters and combinatorial number theory, Number Theory Carbondale 1979 (M. Nathanson, ed.), Lecture Notes in Math., vol. 751, Springer-Verlag, Berlin and New York, 1979, pp. 119-184. MR 564927 (81m:10019)
  • [12] -, Ultrafilters and Ramsey Theory--an update, Set Theory and its Applications, (J. Steprans and S. Watson, eds.), Lecture Notes in Math., vol. 1401, Springer-Verlag, Berlin and New York, 1989, pp. 97-118.
  • [13] A. Olshanskii, Groups of bounded period with subgroups of prime order, Algebra i Logika 21 (1982), 553-618 (Russian). MR 721048 (85g:20052)
  • [14] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), 242-280. MR 1545354
  • [15] B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 19 (1927), 212-216.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03E05, 05D10, 22A15, 54H15, 54H20

Retrieve articles in all journals with MSC: 03E05, 05D10, 22A15, 54H15, 54H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1069744-5
Keywords: Ramsey theory, noncommutative semigroups, van der Waerden's Theorem
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society