Pettis integrability
Author:
Gunnar F. Stefánsson
Journal:
Trans. Amer. Math. Soc. 330 (1992), 401418
MSC:
Primary 46G10; Secondary 28B05, 46B20
MathSciNet review:
1070352
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A weakly measurable function is said to be determined by a subspace of if for each , implies that a.e. For a given Dunford integrable function with a countably additive indefinite integral we show that is Pettis integrable if and only if is determined by a weakly compactly generated subspace of if and only if is determined by a subspace which has Mazur's property. We show that if is Pettis integrable then there exists a sequence ( ) of valued simple functions such that for all , a.e. if and only if is determined by a separable subspace of . For a bounded weakly measurable function into a dual of a weakly compactly generated space, we show that is Pettis integrable if and only if is determined by a separable subspace of if and only if is weakly equivalent to a Pettis integrable function that takes its range in .
 [1]
D.
Amir and J.
Lindenstrauss, The structure of weakly compact sets in Banach
spaces, Ann. of Math. (2) 88 (1968), 35–46. MR 0228983
(37 #4562)
 [2]
Kevin
T. Andrews, Universal Pettis integrability, Canad. J. Math.
37 (1985), no. 1, 141–159. MR 777045
(86j:46040), http://dx.doi.org/10.4153/CJM19850115
 [3]
W.
J. Davis, T.
Figiel, W.
B. Johnson, and A.
Pełczyński, Factoring weakly compact operators,
J. Functional Analysis 17 (1974), 311–327. MR 0355536
(50 #8010)
 [4]
Joseph
Diestel, Sequences and series in Banach spaces, Graduate Texts
in Mathematics, vol. 92, SpringerVerlag, New York, 1984. MR 737004
(85i:46020)
 [5]
J.
Diestel and J.
J. Uhl Jr., Vector measures, American Mathematical Society,
Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical
Surveys, No. 15. MR 0453964
(56 #12216)
 [6]
David
H. Fremlin and Michel
Talagrand, A decomposition theorem for additive setfunctions, with
applications to Pettis integrals and ergodic means, Math. Z.
168 (1979), no. 2, 117–142. MR 544700
(80k:28004), http://dx.doi.org/10.1007/BF01214191
 [7]
N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
 [8]
Robert
F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), no. 1, 81–86. MR 603606
(82c:28018), http://dx.doi.org/10.1090/S00029939198106036068
 [9]
R.
Huff, Remarks on Pettis
integrability, Proc. Amer. Math. Soc.
96 (1986), no. 3,
402–404. MR
822428 (87g:46074), http://dx.doi.org/10.1090/S00029939198608224280
 [10]
Michel
Talagrand, Pettis integral and measure theory, Mem. Amer.
Math. Soc. 51 (1984), no. 307, ix+224. MR 756174
(86j:46042)
 [1]
 D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 80 (1968), 3446. MR 0228983 (37:4562)
 [2]
 K. T. Andrews, Universal Pettis integrability, Canad. J. Math. 37 (1985), 141159. MR 777045 (86j:46040)
 [3]
 W. J. Davis, T. Figiel, W. B. Johnson, and A. Pelczynski, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311327. MR 0355536 (50:8010)
 [4]
 J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 94, SpringerVerlag, New York, 1984. MR 737004 (85i:46020)
 [5]
 J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977. MR 0453964 (56:12216)
 [6]
 D. H. Fremlin and M. Talagrand, A decomposition theorem for additive setfunctions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), 117142. MR 544700 (80k:28004)
 [7]
 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
 [8]
 R. F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 8186. MR 603606 (82c:28018)
 [9]
 R. E. Huff, Some remarks on the Pettis integral, Proc. Amer. Math. Soc. 96 (1986), 402404. MR 822428 (87g:46074)
 [10]
 M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. No. 307, 1984, reprint 1986. MR 756174 (86j:46042)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
46G10,
28B05,
46B20
Retrieve articles in all journals
with MSC:
46G10,
28B05,
46B20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199210703520
PII:
S 00029947(1992)10703520
Keywords:
Banach space,
Pettis integral,
weak measurability,
integral
Article copyright:
© Copyright 1992 American Mathematical Society
