Pettis integrability

Author:
Gunnar F. Stefánsson

Journal:
Trans. Amer. Math. Soc. **330** (1992), 401-418

MSC:
Primary 46G10; Secondary 28B05, 46B20

MathSciNet review:
1070352

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A weakly measurable function is said to be determined by a subspace of if for each , implies that a.e. For a given Dunford integrable function with a countably additive indefinite integral we show that is Pettis integrable if and only if is determined by a weakly compactly generated subspace of if and only if is determined by a subspace which has Mazur's property.

We show that if is Pettis integrable then there exists a sequence ( ) of valued simple functions such that for all , a.e. if and only if is determined by a separable subspace of .

For a bounded weakly measurable function into a dual of a weakly compactly generated space, we show that is Pettis integrable if and only if is determined by a separable subspace of if and only if is weakly equivalent to a Pettis integrable function that takes its range in .

**[1]**D. Amir and J. Lindenstrauss,*The structure of weakly compact sets in Banach spaces*, Ann. of Math. (2)**88**(1968), 35–46. MR**0228983****[2]**Kevin T. Andrews,*Universal Pettis integrability*, Canad. J. Math.**37**(1985), no. 1, 141–159. MR**777045**, 10.4153/CJM-1985-011-5**[3]**W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński,*Factoring weakly compact operators*, J. Functional Analysis**17**(1974), 311–327. MR**0355536****[4]**Joseph Diestel,*Sequences and series in Banach spaces*, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR**737004****[5]**J. Diestel and J. J. Uhl Jr.,*Vector measures*, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR**0453964****[6]**David H. Fremlin and Michel Talagrand,*A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means*, Math. Z.**168**(1979), no. 2, 117–142. MR**544700**, 10.1007/BF01214191**[7]**N. Dunford and J. T. Schwartz,*Linear operators, Part*I, Interscience, New York, 1958.**[8]**Robert F. Geitz,*Pettis integration*, Proc. Amer. Math. Soc.**82**(1981), no. 1, 81–86. MR**603606**, 10.1090/S0002-9939-1981-0603606-8**[9]**R. Huff,*Remarks on Pettis integrability*, Proc. Amer. Math. Soc.**96**(1986), no. 3, 402–404. MR**822428**, 10.1090/S0002-9939-1986-0822428-0**[10]**Michel Talagrand,*Pettis integral and measure theory*, Mem. Amer. Math. Soc.**51**(1984), no. 307, ix+224. MR**756174**, 10.1090/memo/0307

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46G10,
28B05,
46B20

Retrieve articles in all journals with MSC: 46G10, 28B05, 46B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1070352-0

Keywords:
Banach space,
Pettis integral,
weak measurability,
integral

Article copyright:
© Copyright 1992
American Mathematical Society