Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An upper bound for the least dilatation


Author: Max Bauer
Journal: Trans. Amer. Math. Soc. 330 (1992), 361-370
MSC: Primary 57M99; Secondary 57N05, 57R50, 58F15
DOI: https://doi.org/10.1090/S0002-9947-1992-1094556-6
MathSciNet review: 1094556
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We given an upper bound for the least dilatation arising from a pseudo-Anosov map of a closed surface of genus greater or equal to three.


References [Enhancements On Off] (What's this?)

  • [Ab] W. Abikoff, The real-analytic theory of Teichmüller space, Lecture Notes in Math., vol. 820, Springer-Verlag, 1980. MR 590044 (82a:32028)
  • [AY] P. Arnoux and J. Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris 292 (1981), 75-78. MR 610152 (82b:57018)
  • [Ba] M. Bauer, Examples of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 330 (1992), 333-359. MR 1094557 (92g:57025)
  • [CB] A. Casson and S. Bleier, Automorphisms of surfaces after Nielson and Thurston, London Mathematical Soc. Student Texts 9, Cambridge Univ. Press, 1988. MR 964685 (89k:57025)
  • [FLP] A. Fathi, F. Laudenbach, V. Poenaru et al., Travaux de Thurston sur les surfaces, Asterisque 66-67, Sem. Orsay, Soc. Math. de France, 1979. MR 568308 (82m:57003)
  • [Ga] F. Gantmacher, Theory of matrices (vol. 2), Chelsea, 1960.
  • [HP] R. C. Penner (with J. L. Harer), Combinatorics of train tracks, Ann. of Math. Studies, Princeton Univ. Press, 1991. MR 1144770 (94b:57018)
  • [Pa] A. Papadopoulos, Difféomorphismes pseudo-Anosov et automorphismes symplectiques de l'homologie, Ann. Sci. Ecole Norm. Sup. 15 (1982), 543-546. MR 690652 (84k:58179)
  • [P1] R. C. Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 130 (1988). MR 930079 (89k:57026)
  • [P2] -, Bounds on least dilatations (to appear).
  • [PP] A. Papadopoulos and R. C. Penner, A characterization of pseudo-Anosov foliations, Pacific J. Math. 130 (1987). MR 914107 (88k:57015)
  • [Th] W. Thurston, The geometry and topology of three-manifolds, Lecture Notes, Princeton Univ., 1978.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M99, 57N05, 57R50, 58F15

Retrieve articles in all journals with MSC: 57M99, 57N05, 57R50, 58F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1094556-6
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society