ERRATUM TO “CHARACTERIZATIONS OF NORMAL QUINTIC K-3 SURFACES”

JIN-GEN YANG

T. Urabe [1] kindly pointed out that the proof of Lemma 2.1 of [2] does not work. In fact, the statement of the lemma is false. There exist normal quintic surfaces with two triple points and one elliptic double point. For example, let S_0 be a quintic surface defined by the equation

$$(y - 1)(y - x^2)(y^2 - 2y + x^2) + (y - x^2)z^2 + xy^3 + pz^4 + v z^5 = 0,$$

where x, y, z are (affine) coordinates and λ, μ and ν are generic complex constants. It contains one elliptic double point $(0, 0, 0)$ and two triple points $(1, 1, 0)$ and $(-1, 1, 0)$. It can be checked that the minimal resolution S of S_0 contains three (-1)-curves and the minimal model of S is a $K3$ surface. Therefore Lemma 2.1 and Theorem 1 should be deleted from [2].

REFERENCES

DEPARTMENT OF MATHEMATICS, FUDAN UNIVERSITY, SHANGHAI, CHINA

Received by the editors March 9, 1991.