Finite codimensional subalgebras of Stein algebras and semiglobally Stein algebras

Authors:
Hà Huy Khoái and Nguyen Văn Khuê

Journal:
Trans. Amer. Math. Soc. **330** (1992), 503-508

MSC:
Primary 32E25; Secondary 30H05, 32E10

DOI:
https://doi.org/10.1090/S0002-9947-1992-1025755-7

MathSciNet review:
1025755

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following theorem is proved: For each finite codimensional subalgebra of a Stein algebra there exists a natural number such that is algebraically isomorphic to .

**[1]**Hans Grauert and Reinhold Remmert,*Theory of Stein spaces*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 236, Springer-Verlag, Berlin-New York, 1979. Translated from the German by Alan Huckleberry. MR**580152****[2]**Robert C. Gunning and Hugo Rossi,*Analytic functions of several complex variables*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR**0180696****[3]**Ha Huy Khoai,*On the topology of a class of complex manifolds*, Proc. 1st Congress Math., Hanoi, 1971.**[4]**-,*Finiteness of complex analytic spaces*, Vietnam Math. J.**1**(1973).**[5]**-,*Finite prolongeability of holomorphic functions on analytic sets*, Vietnam Math. J.**3**(1973).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32E25,
30H05,
32E10

Retrieve articles in all journals with MSC: 32E25, 30H05, 32E10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1025755-7

Article copyright:
© Copyright 1992
American Mathematical Society