Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Symmetry of knots and cyclic surgery


Authors: Shi Cheng Wang and Qing Zhou
Journal: Trans. Amer. Math. Soc. 330 (1992), 665-676
MSC: Primary 57M25; Secondary 57N12
MathSciNet review: 1031244
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If a nontorus knot $ K$ admits a symmetry which is not a strong inversion, then there exists no nontrivial cyclic surgery on $ K$. No surgery on a symmetric knot can produce a fake lens space or a $ 3$-manifold $ M$ with $ \vert{\pi _1}(M)\vert= 2$. This generalizes the result of Culler-Gordon-Luecke-Shalen-Bleiler-Scharlemann and supports the conjecture that no nontrivial surgery on a nontrivial knot yields a $ 3$-manifold $ M$ with $ \vert{\pi _1}(M)\vert < 5$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M25, 57N12

Retrieve articles in all journals with MSC: 57M25, 57N12


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1992-1031244-6
PII: S 0002-9947(1992)1031244-6
Article copyright: © Copyright 1992 American Mathematical Society