Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Symmetry of knots and cyclic surgery

Authors: Shi Cheng Wang and Qing Zhou
Journal: Trans. Amer. Math. Soc. 330 (1992), 665-676
MSC: Primary 57M25; Secondary 57N12
MathSciNet review: 1031244
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If a nontorus knot $ K$ admits a symmetry which is not a strong inversion, then there exists no nontrivial cyclic surgery on $ K$. No surgery on a symmetric knot can produce a fake lens space or a $ 3$-manifold $ M$ with $ \vert{\pi _1}(M)\vert= 2$. This generalizes the result of Culler-Gordon-Luecke-Shalen-Bleiler-Scharlemann and supports the conjecture that no nontrivial surgery on a nontrivial knot yields a $ 3$-manifold $ M$ with $ \vert{\pi _1}(M)\vert < 5$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M25, 57N12

Retrieve articles in all journals with MSC: 57M25, 57N12

Additional Information

PII: S 0002-9947(1992)1031244-6
Article copyright: © Copyright 1992 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia