Symmetry of knots and cyclic surgery

Authors:
Shi Cheng Wang and Qing Zhou

Journal:
Trans. Amer. Math. Soc. **330** (1992), 665-676

MSC:
Primary 57M25; Secondary 57N12

DOI:
https://doi.org/10.1090/S0002-9947-1992-1031244-6

MathSciNet review:
1031244

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If a nontorus knot admits a symmetry which is not a strong inversion, then there exists no nontrivial cyclic surgery on . No surgery on a symmetric knot can produce a fake lens space or a -manifold with . This generalizes the result of Culler-Gordon-Luecke-Shalen-Bleiler-Scharlemann and supports the conjecture that no nontrivial surgery on a nontrivial knot yields a -manifold with .

**[BR]**J. Bailey and D. Rolfsen,*An unexpected surgery construction of lens space*, Pacific J. Math.**71**(1977), 295-298. MR**0488061 (58:7633)****[BL]**S. Bleiler and R. Litherland,*Lens spaces and Dehn surgery*, Proc. Amer. Math. Soc.**107**(1989), 1127-1131. MR**984783 (90e:57031)****[BS]**S. Bleiler and M. Scharlemann,*A projective plane with three critical points is standard*MSRI, preprint.**[CGLS]**M. Culler, C. M. Gordon, J. Luecke and P. B. Shalen,*Dehn surgery on knots*, Ann. of Math. (2)**125**(1987), 237-300. MR**881270 (88a:57026)****[FS]**R. Fintushel and R. Stern,*Constructing lens spaces by surgery on knots*, Math. Z.**175**(1980), 33-51. MR**595630 (82i:57009a)****[Ga]**D. Gabai,*Foliation and surgery on knots*, Bull. Amer. Math. Soc.**15**(1986), 83-86. MR**838791 (87h:57009)****[H]**J. Hempel, -*manifolds*, Princeton Univ. Press, Princeton, N. J., 1976. MR**0415619 (54:3702)****[HR]**C. Hodgson and J. H. Rubinstein,*Involutions and isotopies of lens spaces*, Lecture Notes in Math., vol. 1144, Springer-Verlag, 1983. MR**823282 (87h:57028)****[M]**L. Moser,*Elementary surgery along torus knots*, Pacific J. Math.**38**(1971), 734-745. MR**0383406 (52:4287)****[MB]**J. Morgan and H. Bass,*The Smith conjecture*, Academic Press, New York, 1984. MR**758459 (86i:57002)****[MY]**W. Meeks and S. Yau,*Topology of three-dimensional manifolds and the embedding problems in minimal surface theory*, Ann. of Math. (2)**112**(1980), 441-484. MR**595203 (83d:53045)****[MSY]**W. Meeks, L. Simon and S. Yau,*Embedded minimal surfaces, exotic sphere, and manifolds with positive Ricci curvature*, Ann. of Math. (2)**116**(1982), 621-659. MR**678484 (84f:53053)****[R]**D. Rolfsen,*Knots and links*, Publish or Perish, Cambridge, Mass., 1976. MR**0515288 (58:24236)****[S]**P. Scott,*The geometry of*-*manifolds*, Bull. London Math. Soc.**15**(1983), 401-487. MR**705527 (84m:57009)****[SCK]**T. Soma, K. Chshika and S. Kojima,*Towards a proof of Thurston's geometrization theory for orbifolds*, Hyperbolic Geometry and Three Manifolds, Res. Inst. Math. Sci., Kokyuroku**568**(1986), 1-72.**[T]**W. Thurston,*Three-manifold with symmetry*, preprint.**[W]**S. Wang,*Cyclic surgery on knots*, Proc. Amer. Math. Soc.**107**(1989), 1091-1094. MR**984820 (90e:57030)****[Wu]**Y. Wu, Topology Appl.**36**(1990), 205-208. MR**1070700 (91k:57009)****[Z]**Q. Zhou, -*dimensional geometric cone structures*, Thesis, UCLA, 1990.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57M25,
57N12

Retrieve articles in all journals with MSC: 57M25, 57N12

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1031244-6

Article copyright:
© Copyright 1992
American Mathematical Society