Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

Isomorphism invariants for abelian groups


Authors: D. M. Arnold and C. I. Vinsonhaler
Journal: Trans. Amer. Math. Soc. 330 (1992), 711-724
MSC: Primary 20K15
MathSciNet review: 1040040
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A= ({A_1},\ldots,{A_n})$ be an $ n$-tuple of subgroups of the additive group, $ Q$, of rational numbers and let $ G(A)$ be the kernel of the summation map $ {A_1} \oplus \cdots \oplus {A_n} \to \sum \;{A_i}$ and $ G[A]$ the cokernel of the diagonal embedding $ \cap \,{A_1} \to {A_1} \oplus \cdots \oplus {A_n}$. A complete set of isomorphism invariants for all strongly indecomposable abelian groups of the form $ G(A)$, respectively, $ G[A]$, is given. These invariants are then extended to complete sets of isomorphism invariants for direct sums of such groups and for a class of mixed abelian groups properly containing the class of Warfield groups.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20K15

Retrieve articles in all journals with MSC: 20K15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1992-1040040-5
PII: S 0002-9947(1992)1040040-5
Article copyright: © Copyright 1992 American Mathematical Society