Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A general condition for lifting theorems


Author: E. Arthur Robinson
Journal: Trans. Amer. Math. Soc. 330 (1992), 725-755
MSC: Primary 28D05; Secondary 28D20
DOI: https://doi.org/10.1090/S0002-9947-1992-1040044-2
MathSciNet review: 1040044
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We define a general condition, called stability on extensions $ T$ of measure preserving transformations $ S$. Stability is defined in terms of relative unique ergodicity, and as a joining property. Ergodic compact group extensions are stable, and moreover stable extensions satisfy lifting theorems similar to those satisfied by group extensions. In general, stable extensions have relative entropy zero. In the class of continuous flow extensions over strictly ergodic homeomorphisms, stable extensions are generic.


References [Enhancements On Off] (What's this?)

  • [1] K. Berg, Quasidisjointness in ergodic theory, Trans. Amer. Math. Soc. 162 (1971), 71-87. MR 0284563 (44:1788)
  • [2] -, Quasidisjointness, products and inverse limits, Math. Systems Theory 6 (1972), 123-128. MR 0306443 (46:5569)
  • [3] J. R. Blum and D. L. Hanson, On the main ergodic theorem for subsequences, Bull. Amer. Math. Soc. 66 (1963), 308-311. MR 0118803 (22:9572)
  • [4] A. Rothstein and R. Burton, Isomorphism theorems in ergodic theory, Lecture notes, Department of Mathematics, Oregon State University.
  • [5] J. Coquet and P. Lairdet, A metric study involving independent sequences, J. Analyse Math. 49 (1987), 15-53. MR 928506 (89e:11043)
  • [6] N. Friedman, Mixing on sequences, Canad. J. Math. 35 (1983), 339-352. MR 695088 (85a:28011)
  • [7] -, Higher order partial mixing, Contemp. Math., vol. 26, Amer. Math. Soc., Providence, R.I., 1984, pp. 111-130. MR 737394 (85h:28014)
  • [8] N. Friedman and D. Ornstein, On partial mixing transformations, Indiana Univ. Math. J. 20 (1971), 767-775. MR 0267074 (42:1976)
  • [9] -, On mixing and partial mixing, Illinois J. Math. 16 (1972), 61-68. MR 0293059 (45:2138)
  • [10] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49. MR 0213508 (35:4369)
  • [11] -, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573-601. MR 0133429 (24:A3263)
  • [12] -, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256. MR 0498471 (58:16583)
  • [13] -, Recurrence in ergodic theory and combinatorial number theory, Princeton Univeristy Press, Princeton, N.J., 1981. MR 603625 (82j:28010)
  • [14] H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations, Lecture Notes in Math., vol. 668, Springer-Verlag, Berlin and New York, 1978, pp. 127-132. MR 518553 (80b:28023)
  • [15] S. Glasner, Relatively invariant measures, Pacific. J. Math. 58 (1975), 393-410. MR 0380756 (52:1653)
  • [16] -, Quasi-factors in ergodic theory, Israel J. Math. 45 (1983), 198-208.
  • [17] S. Galsner and B. Weiss, On the construction of minimal skew products, Israel J. Math. 34 (1979), 321-336. MR 570889 (82f:54068)
  • [18] -, Processes disjoint from weak mixing, Trans. Amer. Math. Soc. 316 (1989), 689-703. MR 946217 (90c:28026)
  • [19] K. L. Jones, A mean ergodic theorem for weakly mixing sequences of operators, Adv. in Math. 7 (1971), 211-216. MR 0285690 (44:2908)
  • [20] R. Jones and W. Parry, Compact abelian group extensions of discrete dynamical systems II, Comput. Math. 25 (1972), 135-147. MR 0338318 (49:3083)
  • [21] J. King, Joining-rank and the structure, J. Analyse Math. 51 (1988), 182-221. MR 963154 (89k:28009)
  • [22] W. Krieger, On unique ergodicity, Proc. Sixth Berkeley Sympos., Univ. of California Press, 1972, pp. 327-346. MR 0393402 (52:14212)
  • [23] G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165. MR 0089999 (19:752b)
  • [24] E. E. Moise, Geometric topology in dimensions $ 2$ and $ 3$, Springer-Verlag, New York and Berlin, 1977. MR 0488059 (58:7631)
  • [25] M. Nerurkar, Generic theorems for continuous, ergodic skew product actions of amenable groups, Pacific J. Math. 119 (1985), 343-363. MR 803124 (86m:28011)
  • [26] W. Parry, Ergodic properties of transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757-771. MR 0260975 (41:5595)
  • [27] M. S. Pinsker, Dynamical systems with completely positive or zero entropy, Dokl. Akad. Nauk SSSR 133 (1960), 1025-1026; English transl. in Soviet Math. Dokl. 1 (1961), 335-338. MR 0152628 (27:2603)
  • [28] E. A. Robinson, The maximal abelian subextension determines weak mixing for group extensions, Proc. Amer. Math. Soc. (to appear). MR 1062835 (92e:28010)
  • [29] -, Ergodic properties that lift to compact group extensions, Proc. Amer. Math. Soc. 102 (1988), 61-67. MR 915717 (88i:28035)
  • [30] D. Rudolph, An example of a measure preserving transformation with minimal self-joinings, J. Analyse Math. 35 (1979), 97-122. MR 555301 (81e:28011)
  • [31] -, Classifying the isometric extensions of a Bernoulli shift, J. Analyse Math. 34 (1978), 36-60. MR 531270 (80g:28020)
  • [32] -, $ K$-fold mixing lifts to weakly mixing isometric extensions, Ergodic Theory Dynamical Systems 5 (1985), 445-447. MR 805841 (87a:28023)
  • [33] -, $ {{\mathbf{Z}}^n}$ and $ {{\mathbf{R}}^n}$ cocycle extensions and complementary algebras, Ergodic Theory Dynamical Systems 6 (1986), 583-599. MR 873434 (88b:28032)
  • [34] -, Asymptotically Brownian skew products give nonloosely Bernoulli $ K$-automorphisms, preprint.
  • [35] J.-P. Thouvenot, Quelques propriétés des systèms dynamiques qui se décomposant en un produit de deux systèmes dont l'un es un schèma de Bernoulli, Israel J. Math. 21 (1975), 177-207. MR 0399419 (53:3263)
  • [36] H. Totoki, Ergodic theory, Aarhus Univ. Lecture Notes, 1969. MR 0254216 (40:7425)
  • [37] V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191-220. MR 0159923 (28:3139)
  • [38] P. Walters, An introduction to ergodic theory, Springer-Verlag, New York and Berlin, 1982. MR 648108 (84e:28017)
  • [39] -, Some invariant $ \sigma $-algebras for measure-preserving transformations, Trans. Amer. Math. Soc. 163 (1972), 357-368. MR 0291413 (45:506)
  • [40] -, Some transformations having a unique measure with maximal entropy, Proc. London Math. Soc. (3) 28 (1974), 500-516. MR 0367158 (51:3400)
  • [41] B. Weiss, Strictly ergodic models for dynamical systems, Bull. Amer. Math. Soc. 13 (1985), 143-146. MR 799798 (87c:28026)
  • [42] R. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409. MR 0409770 (53:13522)
  • [43] -, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20, (1976), 555-588. MR 0414832 (54:2924)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28D05, 28D20

Retrieve articles in all journals with MSC: 28D05, 28D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1040044-2
Keywords: Ergodic theory
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society