Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A phenomenon of reciprocity in the universal Steenrod algebra

Author: Luciano Lomonaco
Journal: Trans. Amer. Math. Soc. 330 (1992), 813-821
MSC: Primary 55S99; Secondary 18G10, 18G15, 55U99
MathSciNet review: 1044963
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we compute the cohomology algebra of certain subalgebras $ {L_r}$ and certain quotients $ {K_s}$ of the $ \bmod\, 2$ universal Steenrod algebra $ Q$, the algebra of cohomology operations for $ {H_\infty }$-ring spectra (see $ [$M$ ]$). We prove that

$\displaystyle \operatorname{Ext}_{{L_r}}({F_2},{F_2}) \cong {K_{ - k + 1}}, \qquad \operatorname{Ext}_{{K_s}}({F_2},{F_2}) \cong {L_{ - s + 1}}$

with $ r$, $ s$ integers and $ r \leq 1$, $ s \geq 0$. We also observe that some of the algebras $ {L_r}$, $ {K_s}$ are well known objects in stable homotopy theory and in fact our computation generalizes the fact that $ {H^{\ast} }({A_L}) \cong \Lambda ^{{\text{opp}}}$ and $ {H^{\ast} }({\Lambda ^{{\text{opp}}}}) \cong {A_L}$ (see, for instance, $ [$P$ ]$). Here $ {A_L}$ is the Steenrod algebra for simplicial restricted Lie algebras and $ \Lambda $ is the $ {E_1}$-term of the Adams spectral sequence discovered in $ [$B-S$ ]$.

References [Enhancements On Off] (What's this?)

  • [B-S] A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The $ \bmod\,p$ lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342. MR 0199862 (33:8002)
  • [BG] E. H. Brown and S. Gitler, A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra, Topology 12 (1973), 283-295. MR 0391071 (52:11893)
  • [L] L. Lomonaco, Dickson invariants and the universal Steenrod algebra, Rend. Circ. Mat. Palermo (2) 24 (1990), 429-444. MR 1108226 (92e:55017)
  • [M] J. P. May, A general approach to Steenrod operations, Lecture Notes in Math., vol. 168, Springer-Verlag, 1970, pp. 153-231. MR 0281196 (43:6915)
  • [P] S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60. MR 0265437 (42:346)
  • [S] W. M. Singer, Invariant theory and the lambda algebra, Trans. Amer. Math. Soc. 280 (1983), 673-693. MR 716844 (85e:55029)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55S99, 18G10, 18G15, 55U99

Retrieve articles in all journals with MSC: 55S99, 18G10, 18G15, 55U99

Additional Information

Keywords: Universal Steenrod algebra, Koszul algebras
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society