Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The transverse homoclinic dynamics and their bifurcations at nonhyperbolic fixed points

Author: Bo Deng
Journal: Trans. Amer. Math. Soc. 331 (1992), 15-53
MSC: Primary 58F14; Secondary 34C23, 34C37, 58F15
MathSciNet review: 1024768
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The complete description of the dynamics of diffeomorphisms in a neighborhood of a transverse homoclinic orbit to a hyperbolic fixed point is obtained. It is topologically conjugate to a non-Bernoulli shift called $ \{ {\sum,\sigma } \}$. We also obtain a more or less complete picture, referred to as the net weaving bifurcation, when the fixed point of such a system is undergoing the generic saddle-node bifurcation. The idea of homotopy conjugacy is naturally introduced to show that systems whose fixed points undergo the pitchfork, transcritical, periodic doubling, and Hopf bifurcations are all homotopically conjugate to our shift dynamics $ \{ {\sum,\sigma } \}$ in a neighborhood of a transverse homoclinic orbit. These bifurcations are also examined in the context of the spectral decomposition with respect to the maximal indecomposable nonwandering sets.

References [Enhancements On Off] (What's this?)

  • [G] D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, R.I., 1927; revised 1966; reprinted 1983. MR 0209095 (35:1)
  • [B] Deng, Sil'nikov problem, invariant manifolds and $ \lambda $-lemma, preprint, 1988a.
  • 1. -, Homoclinic bifurcations with nonhyperbolic equilibria, SIAM J. Math. Anal. 21 (1990), 693-720, 1988b. MR 1046796 (91g:58200)
  • [N] K. Gavrilov and L. P. Sil'nikov, On the three dimensional dynamical systems close to a system with a structurally unstable homoclinic curve. I, Math. USSR-Sb. 17 (1972), 467-485; II, Math. USSR-Sb. 19 (1973), 139-156. MR 0334280 (48:12599)
  • [J] Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, Springer-Verlag, 1983. MR 709768 (85f:58002)
  • [M] Hirsch, C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, 1977. MR 0501173 (58:18595)
  • [J] Moser, Stable and random motions in dynamical systems, Ann. of Math. Studies, no. 77, Princeton Univ. Press, 1973. MR 0442980 (56:1355)
  • [S] Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9-18. MR 0339291 (49:4051)
  • [H] Poincaré, Sur le problème des trois corps et ces équations de la dynamique, Mémoire Couronné du Prix de S. M. le Roi Oscar II, Paris, Acta Math. 13 (1890), 1-271.
  • [C] Robinson, Bifurcations to infinitely many sinks, Comm. Math. Phys. 90 (1983), 433-459. MR 719300 (84k:58169)
  • [S] Schecter, Melnikov's method at a saddle-node and the dynamics of the forced Josephson junction, SIAM J. Math. Anal. 18 (1987), 1699-1715. MR 911659 (88k:58115)
  • [M] Shub, Global stability of dynamical systems, Springer-Verlag, 1987. MR 869255 (87m:58086)
  • [L] P. Sil'nikov, On a Poincaré-Birkhoff problem, Math. USSR-Sb. 3 (1967), 353-371.
  • [S] Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (S. S. Cairns, ed.), Princeton Univ. Press, 1963, pp. 63-80. MR 0182020 (31:6244)
  • 2. -, Differential dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 0228014 (37:3598)
  • [J] Sotomayer, Generic one-parameter families of vector fields, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 5-46.
  • [A] Vanderbauwhede and S. van Gils, Center manifold and contractions on a scale of Banach spaces, J. Funct. Anal. 17 (1987), 209-224. MR 886811 (88d:58085)
  • [S] Wiggins, Global bifurcations and chaos: Analytic methods, Springer-Verlag, 1988. MR 956468 (89m:58057)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F14, 34C23, 34C37, 58F15

Retrieve articles in all journals with MSC: 58F14, 34C23, 34C37, 58F15

Additional Information

Keywords: Transverse homoclinic point, saddle-node bifurcation, symbolic system, topological conjugacy
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society