Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Two-dimensional Cremona groups acting on simplicial complexes
HTML articles powered by AMS MathViewer

by David Wright PDF
Trans. Amer. Math. Soc. 331 (1992), 281-300 Request permission

Abstract:

We show that the $2$-dimensional Cremona group \[ \operatorname {Cr}_2 = \operatorname {Aut}_k\;k(X,Y)\] acts on a $2$-dimensional simplicial complex $C$, which has as vertices certain models in the function field $k(X,Y)$. The fundamental domain consists of one face $F$. This yields a structural description of $\operatorname {Cr}_2$ as an amalgamation of three subgroups along pairwise intersections. The subgroup ${\text {GA}}_2 = \operatorname {Aut}_k\;k[X,Y]$ (integral Cremona group) acts on $C$ by restriction. The face $F$ has an edge $E$ such that the ${\text {GA}}_2$ translates of $E$ form a tree $T$. The action of ${\text {GA}}_2$ on $T$ yields the well-known structure theory for ${\text {GA}}_2$ as an amalgamated free product, using Serre’s theory of groups acting on trees.
References
  • R. C. Alperin, Homology of the group of automorphisms of $k[x,\,y]$, J. Pure Appl. Algebra 15 (1979), no. 2, 109–115. MR 535179, DOI 10.1016/0022-4049(79)90027-6
  • G. Castelnuovo, La trasformazioni generatrici del gruppo Cremoniano nel piano, Atti Acad. Sci. Torino 36 (1901), 861-874.
  • Warren Dicks, Automorphisms of the polynomial ring in two variables, Publ. Sec. Mat. Univ. Autònoma Barcelona 27 (1983), no. 1, 155–162. MR 763864
  • M. H. Gizatullin and V. I. Danilov, Automorphisms of affine surfaces. I, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 3, 523–565, 703 (Russian). MR 0376701
  • —, Automorphisms of affine surfaces. II, Math. USSR-Izv. 11 (1977), no. 1, 51-98. H. P. Hudson, Cremona transformations, Cambridge University Press, Cambridge, 1927.
  • A. N. Tjurin, The intermediate Jacobian of three-dimensional varieties, Current problems in mathematics, Vol. 12 (Russian), VINITI, Moscow, 1979, pp. 5–57, 239 (loose errata) (Russian). MR 537684
  • V. A. Iskovskikh, Generators and relations in a two-dimensional Cremona group, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 5 (1983), 43–48 (Russian). MR 722450
  • V. A. Iskovskikh, Proof of a theorem on relations in the two-dimensional Cremona group, Uspekhi Mat. Nauk 40 (1985), no. 5(245), 255–256 (Russian). MR 810819
  • Heinrich W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174 (German). MR 8915, DOI 10.1515/crll.1942.184.161
  • James H. McKay and Stuart Sui Sheng Wang, An elementary proof of the automorphism theorem for the polynomial ring in two variables, J. Pure Appl. Algebra 52 (1988), no. 1-2, 91–102. MR 949340, DOI 10.1016/0022-4049(88)90137-5
  • Masayoshi Nagata, On automorphism group of $k[x,\,y]$, Kinokuniya Book Store Co., Ltd., Tokyo, 1972. Department of Mathematics, Kyoto University, Lectures in Mathematics, No. 5. MR 0337962
  • —, Our rational surfaces. I, Mem. College Sci. Kyoto Univ. 32 (1960).
  • M. Noether, Zur Theorie der eindentigen Ebenentrasformationen, Math. Ann. 5 (1872), no. 4, 635–639 (German). MR 1509801, DOI 10.1007/BF01442918
  • J.-P. Serre, Arbes, amalgames, et ${\text {SL}}_2$, Astérisque 46 (1977). I. R. Shafarevich, Algebraic surfaces, Proc. Steklov Inst. Math. 75 (1965).
  • Christophe Soulé, Groupes opérant sur un complexe simplicial avec domaine fondamental, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A607–A609 (French). MR 317307
  • Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 284516, DOI 10.1016/0001-8708(71)90027-2
  • W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33–41. MR 54574
  • David Wright, Algebras which resemble symmetric algebras, Conference on Commutative Algebra-1975 (Queen’s Univ., Kingston, Ont., 1975), Queen’s Papers on Pure and Applied Math., No. 42, Queen’s Univ., Kingston, Ont., 1975, pp. 225–240. MR 0401737
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 14E07, 14J50, 20F05
  • Retrieve articles in all journals with MSC: 14E07, 14J50, 20F05
Additional Information
  • © Copyright 1992 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 331 (1992), 281-300
  • MSC: Primary 14E07; Secondary 14J50, 20F05
  • DOI: https://doi.org/10.1090/S0002-9947-1992-1038019-2
  • MathSciNet review: 1038019