Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Gauge invariant quantization on Riemannian manifolds


Authors: Zhang Ju Liu and Min Qian
Journal: Trans. Amer. Math. Soc. 331 (1992), 321-333
MSC: Primary 58G15; Secondary 58F05, 58F06
DOI: https://doi.org/10.1090/S0002-9947-1992-1040266-0
MathSciNet review: 1040266
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For every pointwise polynomial function on each fiber of the cotangent bundle of a Riemannian manifold $ M$, a family of differential operators is given, which acts on the space of smooth sections of a vector bundle on $ M$. Such a correspondence may be considered as a rule to quantize classical systems moving in a Riemannian manifold or in a gauge field. Some applications of our construction are also given in this paper.


References [Enhancements On Off] (What's this?)

  • [1] D. Bleecker, Gauge theory and variational principles, Addison-Wesley, 1981. MR 643361 (83h:53049)
  • [2] J. Czyz, On geometric quantization and its connection with Maslov theory, Rep. Math. Phys. 15 (1979), 57-97. MR 551131 (80m:58019)
  • [3] C. De Witt-Morette and D. Elworthy, A stochastic scheme for constructing solutions of Schrödinger equations, Ann. Inst. H. Poincaré A-32 (1980), 327-341. MR 594632 (82m:81028)
  • [4] D. Elworthy, Path integrations on manifolds, Mathematical Aspects of Superspace, Reidel, 1984. MR 773079 (86h:58025)
  • [5] V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cambridge Univ. Press, 1984. MR 770935 (86f:58054)
  • [6] A. Lichnerowicz, Twisted products for cotangent bundles of classical groups, Lett. Math. Phys. 2 (1977), 133-143. MR 0488140 (58:7707)
  • [7] Z. J. Liu, Semi-classical approximations on Riemannian manifolds, Acta Appl. Math. Sinica (to appear).
  • [8] -, Quantum integrable systems constrained on the sphere, Lett. Math. Phys. 20 (1990), 151-157. MR 1065243 (91h:58049)
  • [9] V. P. Maslov and M. P. Fedoriuk, Semi-classical approximation in quantum mechanics, Reidel, 1981.
  • [10] J. Underhill, Quantization on a manifold with connection, J. Math. Phys. 19 (1978). MR 0496146 (58:14727)
  • [11] A. Weinstein, Quasi-classical mechanics on spheres, Istituto Nazionale di Mat. Sympos. Math. 14 (1974). MR 0385940 (52:6799)
  • [12] H. Widom, A Szego theorem and symbol calculus for pseudo differential operators, Ann. of Math. Stud., no. 91, Princeton Univ. Press, 1979, pp. 261-283. MR 547022 (81b:58043)
  • [13] E. Wolf and G. Agarwal, Calculus for functions of non-commuting operators, Phys. Rev. D 12 (1970), 2161-2186. MR 0395537 (52:16334a)
  • [14] N. Woodhouse, Geometric quantization, Oxford Univ. Press, 1980. MR 605306 (84j:58058)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G15, 58F05, 58F06

Retrieve articles in all journals with MSC: 58G15, 58F05, 58F06


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1040266-0
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society