Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Frames associated with an abelian $ l$-group


Author: James J. Madden
Journal: Trans. Amer. Math. Soc. 331 (1992), 265-279
MSC: Primary 06F20; Secondary 18B30, 46S99, 54A05, 54H10
DOI: https://doi.org/10.1090/S0002-9947-1992-1042288-2
MathSciNet review: 1042288
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Every archimedean $ l$-group (lattice-ordered group) with weak unit is shown to be isomorphic to a sub-$ l$-group of the $ l$-group of continuous realvalued functions on a Tychonoff locale canonically associated with the $ l$-group. This strengthens the classical Yosida representation theorem in a useful way. The proof uses methods from universal algebra and is constructive.


References [Enhancements On Off] (What's this?)

  • [B] S. J. Bernau, Free abelian lattice groups, Math. Ann. 180 (1969), 48-59. MR 0241340 (39:2680)
  • [BKW] A. Bigard, K. Keimel, and S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Math., vol. 608, Springer-Verlag, 1977. MR 0552653 (58:27688)
  • [BM] B. Banaschewski and C. Mulvey, Stone-Čech compactification of locales. II, J. Pure Appl. Algebra 33 (1984), 107-122. MR 754950 (86d:06009)
  • [FH] M. P. Fourman and J. M. E. Hyland, Sheaf models for analysis, Applications of Sheaves, Lecture Notes in Math., vol. 753, Springer-Verlag, 1979, pp. 280-301. MR 555550 (82g:03069)
  • [HM] A. W. Hager and J. J. Madden, Majorizing-injectivity in abelian lattice-ordered groups, Rend. Sem. Mat. Univ. Padova 69 (1983), 181-194. MR 716993 (85h:06039)
  • [J] P. T. Johnstone, Stone spaces, Cambridge Studies in Advanced Math. No. 3, Cambridge Univ. Press, 1982. MR 698074 (85f:54002)
  • [JT] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Mem. Amer. Math. Soc, no. 309, 1984. MR 756176 (86d:18002)
  • [LZ] W. A. J. Luxemburg and A. C. Zaneen, Riesz spaces, I, North-Holland, Amsterdam, 1971.
  • [M$ _{1}$] J. J. Madden, On the Yosida representation, General Topology and Applications: Proceedings of the 1988 Northeast Conference, edited by Rae Michael Shortt, Marcel Dekker, 1990, pp. 183-192. MR 1057637
  • [M$ _{2}$] J. J. Madden, $ \kappa$-frames, J. Pure Appl. Algebra 70 (1991), 107-127. MR 1100510 (92d:06030)
  • [MV$ _{1}$] J. J. Madden and J. Vermeer, Lindelöf locales and real compactness, Math. Proc. Cambridge Philos. Soc. 99 (1986), 473-480. MR 830360 (87g:54060)
  • [MV$ _{2}$] -, Epicomplete archimedean $ l$-groups via a localic Yosida theorem, J. Pure Appl. Algebra 68 (1990), 243-252. MR 1082794 (92f:06016)
  • [Mu] C. J. Mulvey, A syntactic construction of the spectrum of a commutative $ {C^{\ast} }$-algebra, Tagungsbereicht of Oberwolfach Category Meeting, 1977.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06F20, 18B30, 46S99, 54A05, 54H10

Retrieve articles in all journals with MSC: 06F20, 18B30, 46S99, 54A05, 54H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1042288-2
Keywords: Yosida representation, archimedean $ l$-group, relatively uniform convergence, frame, locale, $ \sigma $-frame
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society