Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A Chern character in cyclic homology


Author: Luca Quardo Zamboni
Journal: Trans. Amer. Math. Soc. 331 (1992), 157-163
MSC: Primary 19L10; Secondary 18G50, 19K56, 55P35
DOI: https://doi.org/10.1090/S0002-9947-1992-1044967-X
MathSciNet review: 1044967
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that inner derivations act trivially on the cyclic cohomology of the normalized cyclic complex $ \mathcal{C}(\Omega)/\mathcal{D}(\Omega)$ where $ \Omega $ is a differential graded algebra. This is then used to establish the fact that the map introduced in $ [$   GJ$ ]$ defines a Chern character in $ K$ theory.


References [Enhancements On Off] (What's this?)

  • [Ch1] K. T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. 97 (1973), 217-246. MR 0380859 (52:1756)
  • [C] A. Connes, Noncommutative differential geometry, Publ. Math. Inst. Hautes Études Sci. 62 (1985), 41-144. MR 823176 (87i:58162)
  • [GJ] E. Getzler and J. D. S. Jones, $ {A_\infty }$-algebras and the cyclic bar complex, Warwick, preprint, January 1989. MR 1046565 (91e:19001)
  • [GJP] E. Getzler, J. D. S. Jones, and S. Petrack, Differential forms on loop spaces and the cyclic bar complex, Warwick preprint, January, 1989. MR 1113683 (92i:58179)
  • [J] J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403-423. MR 870737 (88f:18016)
  • [Ks] C. Kassel, L'homologie cyclique des algèbres enveloppantes, Invent. Math. 91 (1988), 221-251. MR 922799 (89e:17015)
  • [LQ] J. L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), 565-591. MR 780077 (86i:17003)
  • [T] B. L. Tsygan, Homology of matrix algebras over rings and Hochschild homology, Usepkhi Mat. Nauk 38 : 2 (1983), 217-218; English transl., Russian Math. Surveys 38 (1983), 198-199. MR 695483 (85i:17014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 19L10, 18G50, 19K56, 55P35

Retrieve articles in all journals with MSC: 19L10, 18G50, 19K56, 55P35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1044967-X
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society