Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Subsequence ergodic theorems for $ L\sp p$ contractions


Authors: Roger L. Jones, James Olsen and Máté Wierdl
Journal: Trans. Amer. Math. Soc. 331 (1992), 837-850
MSC: Primary 47A35; Secondary 28D05, 47B38
DOI: https://doi.org/10.1090/S0002-9947-1992-1043860-6
MathSciNet review: 1043860
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper certain subsequence ergodic theorems which have previously been known in the case of measure preserving point transformations, or Dunford Schwartz operators, are extended to operators which are positive contractions on $ {L^p}$ for $ p$ fixed.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Akcoglu and L. Sucheston, Dilations of positive contractions in $ {L^p}$ spaces, Canad. Math. Bull. 20 (1977), 285-292. MR 0458230 (56:16433)
  • [2] J. R. Baxter and J. H. Olsen, Weighted and subsequential ergodic theorems, Canad. J. Math. 35 (1983), 145-166. MR 685822 (84g:47005)
  • [3] A. Bellow and V. Losert, On sequences of density zero in ergodic theory, Contemp. Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1984, pp. 49-60. MR 737387 (86c:28034)
  • [4] -, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc. 288 (1985), 307-345. MR 773063 (86c:28035)
  • [5] J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), 39-72. MR 937581 (89f:28037a)
  • [6] -, An approach to pointwise ergodic theorems, GAFA-Seminar 1987, Lecture Notes in Math., vol. 1317, Springer-Verlag, Berlin, pp. 204-223. MR 950982 (90b:28016)
  • [7] -, On the pointwise ergodic theorem on $ {L^p}$ for arithmetic sets, Israel J. Math. 61 (1988), 73-84. MR 937582 (89f:28037b)
  • [8] -, On the pointwise ergodic theorem for arithmetic sets, Inst. Hautes Études Sci. Publ. Math., Paris, 1989.
  • [9] A. P. Calderón, Ergodic theory and translation invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353. MR 0227354 (37:2939)
  • [10] A. de la Torre, A simple proof of the maximal ergodic theorem, Canad. J. Math. 28 (1976), 1073-1075. MR 0417819 (54:5867)
  • [11] R. L. Jones, Necessary and sufficient conditions for a maximal ergodic theorem along subsequences, Ergodic Theory Dynamical Systems 7 (1987), 203-210. MR 896793 (88f:28013)
  • [12] R. J. Jones and J. Olsen, Subsequence pointwise ergodic theorems for operators in $ {L^p}$, Israel J. Math. (to appear). MR 1194784 (94d:47008)
  • [13] C. Kan, Ergodic properties of Lamperti operators, Canad. J. Math. 30 (1978), 1206-1214. MR 511557 (80g:47037)
  • [14] J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958). MR 0105017 (21:3764)
  • [15] J. H. Olsen, Dominated estimates of convex combinations of commuting isometries, Israel J.Math. 11 (1972), 1-13. MR 0302862 (46:2005)
  • [16] -, The individual ergodic theorem for Lamperti contractions, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 113-118. MR 612399 (82h:47008)
  • [17] M. Wierdl, Pointwise ergodic theorem along the prime numbers, Israel J. Math. 64 (1988), 315-336. MR 995574 (90f:11062)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A35, 28D05, 47B38

Retrieve articles in all journals with MSC: 47A35, 28D05, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1043860-6
Keywords: Subsequences, positive contractions, Lamperti operators
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society