Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Schubert calculus in complex cobordism


Authors: Paul Bressler and Sam Evens
Journal: Trans. Amer. Math. Soc. 331 (1992), 799-813
MSC: Primary 57R77
DOI: https://doi.org/10.1090/S0002-9947-1992-1044959-0
MathSciNet review: 1044959
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the structure of the complex cobordism ring of the flag variety of a compact connected Lie group. An explicit procedure for determining products of basis elements is obtained, generalizing the work of Bernstein-Gel'fand-Gel'fand on ordinary cohomology and of Kostant-Kumar on $ K$-theory. Bott-Samelson resolutions are used to replace the classical basis of Schubert cells.


References [Enhancements On Off] (What's this?)

  • [A] A. Arabia, Cohomologie $ T$-equivariante de la variété de drapeaux d'un groupe de Kač-Moody, Bull. Soc. Math. France 117 (1989), 129-169. MR 1015806 (90i:32042)
  • [BGG] I. N. Bernstein, I. M. Gel'fand and S. I. Gel'fand, Schubert cells and the cohomology of spaces $ G/P$, Russian Math Surveys 28 (1973), 1-26. MR 0429933 (55:2941)
  • [BE1] P. Bressler and S. Evens, On certain Hecke rings, Proc. Nat. Acad. Sci. U.S.A. 84 (1987), 624-625. MR 873070 (88e:17011)
  • [BE2] -, The Schubert calculus, braid relations, and generalized cohomology, Trans. Amer. Math. Soc. 317 (1990), 799-811. MR 968883 (90e:57074)
  • [BH] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458-538. MR 0102800 (21:1586)
  • [BS] R. Bott and H. Samelson, Application of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029. MR 0105694 (21:4430)
  • [D] M. Demazure, Desingularization des variétés de Schubert, Ann. École Norm. Sup. (4) 7 (1974), 53-58. MR 0354697 (50:7174)
  • [Dy] E. Dyer, Cohomology theories, Benjamin, New York, 1969. MR 0268883 (42:3780)
  • [G] E. Gutkin, Representations of Hecke algebras, Trans. Amer. Math. Soc. 309 (1988), 269-277. MR 957070 (90c:22030)
  • [GH] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, 1978. MR 507725 (80b:14001)
  • [K] V. Kač, Constructing groups associated to infinite dimensional lie algebras, Infinite Dimensional Groups with Applications, MSRI Series, Springer-Verlag, 1985. MR 823320 (87c:17024)
  • [KK1] B. Kostant and S. Kumar, The nil Hecke ring and cohomology of $ G/P$ for a Kac-Moody group $ G$, Adv. in Math. 62 (1986), 187-237. MR 866159 (88b:17025b)
  • [KK2] -, $ T$-equivariant $ K$-theory of generalized flag varieties, Proc. Nat. Acad. Sci. U.S.A. 74 (1987), 4351-4354. MR 894705 (88m:22048)
  • [Ku] S. Kumar, Demazure character formula in arbitrary Kač-Moody setting, Invent. Math. 89 (1987), 395-423. MR 894387 (88i:17018)
  • [Q] D. G. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Adv. in Math. 7 (1971), 29-56. MR 0290382 (44:7566)
  • [S] R. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, N.J., 1968. MR 0248858 (40:2108)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R77

Retrieve articles in all journals with MSC: 57R77


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1044959-0
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society