Commutator theory for relatively modular quasivarieties

Authors:
Keith Kearnes and Ralph McKenzie

Journal:
Trans. Amer. Math. Soc. **331** (1992), 465-502

MSC:
Primary 08C15; Secondary 08B10

DOI:
https://doi.org/10.1090/S0002-9947-1992-1062872-X

MathSciNet review:
1062872

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a commutator theory for relatively modular quasivarieties that extends the theory for modular varieties. We characterize relatively modular quasivarieties, prove that they have an almost-equational axiomatization and we investigate the lattice of subquasivarieties. We derive the result that every finitely generated, relatively modular quasivariety of semigroups is finitely based.

**[C]**P. M. Cohn,*Universal algebra*, Reidel, 1965. MR**0175948 (31:224)****[CzDz]**J. Czelakowski and W. Dziobiak,*Congruence distributive quasivarieties whose finitely subdirectly irreducible members form a universal class*, Algebra Universalis**27**(1990), 128-149. MR**1025840 (91i:08013)****[D]**B. Davey,*Monotone clones and congruence-modularity*, preprint. MR**1063820 (91k:08008)****[DQS]**B. Davey, R. W. Quackenbush, and D. Schweigen,*Monotone clones and the varieties they determine*, preprint.**[Dz1]**W. Dziobiak,*On infinite subdirectly irreducible algebras in locally finite equational classes*, Algebra Universalis**13**(1981), 393-394. MR**631732 (82m:08009)****[Dz2]**-,*Finitely generated congruence-distributive quasivarieties of algebras*, Fund. Math.**133**(1989), 47-57. MR**1059161 (92a:08011)****[Dz3]**-,*Relative congruence-distributivity within quasivarieties of nearly associative*-*algebras*, Fund. Math.**135**(1990), 77-95. MR**1076271 (92e:08009)****[FM]**R. Freese and R. McKenzie,*Commutator theory for congruence modular varieties*, London Math. Soc. Lecture Note Ser., No. 125, Cambridge Univ. Press, 1987. MR**909290 (89c:08006)****[GL]**G. Grätzer and H. Lakser,*The lattice of quasivarieties of lattices*, Algebra Universalis**9**(1979), 102-115. MR**508672 (80b:08005)****[HM]**D. Hobby and R. McKenzie,*The structure of finite algebras*, Contemp. Math., Amer. Math. Soc., Providence, R.I., 1988. MR**958685 (89m:08001)****[K1]**K. Kearnes,*Natural examples of quasivarieties with*, preprint. MR**1240574 (95a:08005)****[K2]**-,*Relatively congruence distributive subquasivarieties of a congruence modular variety*, Bull. Austral. Math. Soc.**41**(1990), 87-96. MR**1043969 (91i:08014)****[M]**R. McKenzie,*Finite equational bases for congruence modular varieties*, Algebra Universalis**24**(1987), 224-250. MR**931614 (89j:08007)****[O]**A. Yu. Ol'shanskii,*Conditional identities in finite groups*, Sibirsk. Mat. Zh.**15**(1974), 1409-1413, 1432; English transl. in Siberian Math. J. (1975). MR**0367068 (51:3310)****[P]**D. Pigozzi,*Finite basis theorems for relatively congruence-distributive quasivarieties*, Trans. Amer. Math. Soc.**310**(1988), 499-533. MR**946222 (90b:08014)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
08C15,
08B10

Retrieve articles in all journals with MSC: 08C15, 08B10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1062872-X

Article copyright:
© Copyright 1992
American Mathematical Society