Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The Gauss map of a genus three theta divisor

Authors: Clint McCrory, Theodore Shifrin and Robert Varley
Journal: Trans. Amer. Math. Soc. 331 (1992), 727-750
MSC: Primary 14H42; Secondary 14H40, 14K25
MathSciNet review: 1070351
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A smooth complex curve is determined by the Gauss map of the theta divisor of the Jacobian variety of the curve. The Gauss map is invariant with respect to the $ (- 1)$-map of the Jacobian. We show that for a generic genus three curve the Gauss map is locally $ {\mathbf{Z}}/2$-stable. One method of proof is to analyze the first-order $ {\mathbf{Z}}/2$-deformations of the Gauss map of a hyperelliptic theta divisor.

References [Enhancements On Off] (What's this?)

  • [1] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of algebraic curves, vol. I, Springer-Verlag, New York, 1985. MR 770932 (86h:14019)
  • [2] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of differentiable maps. I, Birkhäuser, Boston, Mass., 1985. MR 777682 (86f:58018)
  • [3] E. Bierstone, Local properties of smooth maps equivariant with respect to finite group actions, J. Differential Geom. 10 (1975), 523-540. MR 0418141 (54:6183)
  • [4] -, Generic equivariant maps, Real and Complex Singularities, (P. Holm, ed.), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 127-161. MR 0467798 (57:7649)
  • [5] -, The structure of orbit spaces and the singularities of equivariant mappings, Monografías de Matemática, no. 35, IMPA, Rio de Janiero, 1980.
  • [6] H. Cartan, Quotient d'un espace analytique par un groupe d'automorphismes, Algebraic Geometry and Topology, Princeton Univ. Press, Princeton, N. J., 1957, pp. 90-102. MR 0084174 (18:823b)
  • [7] A. Douady and J.-L. Verdier, Séminaire de géométrie analytique, École Norm. Sup. 1971-1972, Astérisque 16 (1974).
  • [8] R. Friedman and R. Smith, Degenerations of Prym varieties and intersections of three quadrics, Invent. Math. 85 (1986), 615-635. MR 848686 (88a:14030)
  • [9] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. MR 507725 (80b:14001)
  • [10] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. MR 0463157 (57:3116)
  • [11] L. Illusie, Complexe cotangent et déformations. I, Lecture Notes in Math., vol. 239, Springer-Verlag, New York, 1971. MR 0491680 (58:10886a)
  • [12] A. Kas and M. Schlessinger, On the versal deformation of a complex space with an isolated singularity, Math. Ann. 196 (1972), 23-29. MR 0294701 (45:3769)
  • [13] S. Lichtenbaum and M. Schlessinger, The cotangent complex of a morphism, Trans. Amer. Math. Soc. 128 (1967), 41-70. MR 0209339 (35:237)
  • [14] E. J. N. Looijenga, Isolated singular points on complete intersections, London Math. Soc. Lecture Notes 77, Cambridge Univ. Press, 1984. MR 747303 (86a:32021)
  • [15] C. McCrory and T. Shifrin, Cusps of the projective Gauss map, J. Differential Geom. 19 (1984), 257-276. MR 739791 (85m:14070)
  • [16] C. McCrory, T. Shifrin, and R. Varley, The Gauss map of a generic hypersurface in $ {\mathbf{P}}^4$, J. Differential Geom. 30 (1989), 689-759. MR 1021371 (91f:14039)
  • [17] C. McCrory, T. Shifrin, R. Varley, and M. Adams, Symmetric Lagrangian singularities and Gauss maps of theta divisors, Lectures Notes in Math., vol. 1462, Springer-Verlag, New York, 1991, pp. 1-26. MR 1129021 (92j:14033)
  • [18] D. Mumford and J. Fogarty, Geometric invariant theory, Springer-Verlag, Berlin, 1982. MR 719371 (86a:14006)
  • [19] V. Poénaru, Singularités $ {C^\infty }$ en présence de symétrie, Lecture Notes in Math., vol. 510, Springer-Verlag, Berlin, 1976.
  • [20] H. E. Rauch, A transcendental view of the space of algebraic Riemann surfaces, Bull. Amer. Math. Soc. 71 (1965), 1-39. MR 0213543 (35:4403)
  • [21] D. Rim, Equivariant $ G$-structure on versal deformations, Trans. Amer. Math. Soc. 257 (1980), 217-226. MR 549162 (80k:14021)
  • [22] R. Smith and R. Varley, Components of the locus of singular theta divisors of genus $ 5$, Lecture Notes in Math., vol. 1124, Springer-Verlag, New York, 1985, pp. 338-416. MR 805339 (86k:14030)
  • [23] B. Teissier, Variétés polaires, II: multiplicités polaires, sections planes, et conditions de Whitney, Lecture Notes in Math., vol. 961, Springer-Verlag, New York, 1981, pp. 314-491. MR 708342 (85i:32019)
  • [24] A. M. Vermuelen, Weierstrass points of weight two on curves of genus three, Dissertation, University of Amsterdam, 1983. MR 715084 (84j:14036)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14H42, 14H40, 14K25

Retrieve articles in all journals with MSC: 14H42, 14H40, 14K25

Additional Information

Keywords: Theta divisor, Jacobian variety, Gauss map, stable map germ, infinitesimal deformation, Kodaira-Spencer map
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society