Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Invariant affine connections on Lie groups


Author: H. Turner Laquer
Journal: Trans. Amer. Math. Soc. 331 (1992), 541-551
MSC: Primary 53C05; Secondary 22E30, 53C30
DOI: https://doi.org/10.1090/S0002-9947-1992-1075384-4
MathSciNet review: 1075384
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The space of bi-invariant affine connections is determined for arbitrary compact Lie groups. In particular, there is a surprising new family of such connections on $ SU(n)$.


References [Enhancements On Off] (What's this?)

  • [1] M. R. Bremner, R. V. Moody, and J. Patera, Tables of dominant weight multiplicities for representations of simple lie algebras, Marcel Dekker, New York, 1985. MR 779462 (86f:17002)
  • [2] T. Bröcker and T. torn Dieck, Representations of compact Lie groups, Springer-Verlag, New York, 1985. MR 781344 (86i:22023)
  • [3] M. Fischler, Young-tableau methods for Kronecker products of representations of the classical groups, J. Math. Phys. 22 (1981), 637-648. MR 617303 (82j:22003)
  • [4] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
  • [5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience, New York, 1963, 1969. MR 0152974 (27:2945)
  • [6] H. T. Laquer, Stability properties of the Yang-Mills functional near the canonical connection, Michigan Math. J. 31 (1984), 139-159. MR 752251 (88a:58047)
  • [7] -, Invariant gauge automorphisms of homogeneous principal bundles, Geom. Dedicata 33 (1990), 27-35. MR 1042622 (90m:53044)
  • [8] -, Invariant affine connections on symmetric spaces, Proc. Amer. Math. Soc. (to appear). MR 1107273 (92i:53047)
  • [9] W. G. McKay and J. Patera, Tables of dimensions, indices, and branching rules for representations of simple Lie algebras, Marcel Dekker, New York, 1981. MR 604363 (82i:17008)
  • [10] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65. MR 0059050 (15:468f)
  • [11] H. C. Wang, On invariant connections over a principal fibre bundle, Nagoya Math. J. 13 (1958), 1-19. MR 0107276 (21:6001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C05, 22E30, 53C30

Retrieve articles in all journals with MSC: 53C05, 22E30, 53C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1075384-4
Keywords: Affine, connection, invariant, homogeneous principal bundle, Lie group
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society