Growth rates, -homology, and volumes of hyperbolic -manifolds

Authors:
Peter B. Shalen and Philip Wagreich

Journal:
Trans. Amer. Math. Soc. **331** (1992), 895-917

MSC:
Primary 57M05; Secondary 20F05, 57M07, 57N10

DOI:
https://doi.org/10.1090/S0002-9947-1992-1156298-8

MathSciNet review:
1156298

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if is a closed orientable irreducible -manifold and is a nonnegative integer, and if has rank for some prime , then every -generator subgroup of has infinite index in , and is in fact contained in infinitely many finite-index subgroups of . This result is used to estimate the growth rates of the fundamental group of a -manifold in terms of the rank of the -homology. In particular it is used to show that the fundamental group of any closed hyperbolic -manifold has uniformly exponential growth, in the sense that there is a lower bound for the exponential growth rate that depends only on the manifold and not on the choice of a finite generating set. The result also gives volume estimates for hyperbolic -manifolds with enough -homology, and a sufficient condition for an irreducible -manifold to be almost sufficiently large.

**[BaS]**G. Baumslag and P. B. Shalen,*Groups whose*-*generator subgroups are free*, Bull. Austral. Math. Soc.**40**(1989), 163-174. MR**1012825 (90h:20041)****[Be]**A. F. Beardon,*The geometry of discrete groups*, Graduate Texts in Math., vol. 91, Springer-Verlag, 1983. MR**698777 (85d:22026)****[Bö]**K. Böröczky,*Packing of spheres in spaces of constant curvature*, Acta Math. Acad. Sci. Hungar.**32**(1978), 243-261. MR**512399 (80h:52014)****[C]**J. Cannon,*The combinatorial structure of cocompact discrete hyperbolic groups*, Geom. Dedicata**16**(1984), 123-148. MR**758901 (86j:20032)****[CS]**M. Culler and P. B. Shalen,*Paradoxical decompositions, Margulis numbers and volumes of hyperbolic*-*manifolds*, Preprint, Univ. of Illinois at Chicago.**[EM]**B. Evans and L. Moser,*Solvable fundamental groups of compact*-*manifolds*, Trans. Amer. Math. Soc.**168**(1972), 189-210. MR**0301742 (46:897)****[F]**P. Fatou,*Fonctions automorphes*, Vol. 2, Théorie des Fonctions Algébriques (P. E. Appell and E. Goursat, Eds.), Gauthiers-Villars, Paris, 1930, pp. 158-160.**[Gr]**M. Gromov,*Structures métriques pour les variétés Riemanniennes*, Fernand-Nathan, Paris.**[He]**J. Hempel, -*manifolds*, Ann. of Math. Studies, no. 86, Princeton Univ. Press, 1976. MR**0415619 (54:3702)****[JaS]**W. H. Jaco and P. B. Shalen,*Seifert fibered spaces in*-*manifolds*, Mem. Amer. Math. Soc.**21**, no. 220(1979). MR**539411 (81c:57010)****[Jo]**K. Johannson,*Homotopy equivalences of*-*manifolds with boundaries*, Lecture Notes in Math., vol. 761, Springer-Verlag, Berlin, 1979. MR**551744 (82c:57005)****[K]**A. G. Kurosh,*Theory of groups*, vol. II, Chelsea, 1960. MR**0109842 (22:727)****[L.]**A. Lubotzky,*Group presentation*, -*adic analytic groups and lattices in*, Ann. of Math.**118**(1983), 115-130. MR**707163 (85i:22017)****[Ma1]**A. Malcev,*On isomorphic matrix representations of infinite groups*, Rec. Math. [Math. Sb.], (N.S.)**8 (50)**(1940), 405-422. MR**0003420 (2:216d)****[Mar]**G. A. Margulis,*Arithmeticity of non-uniform lattices*, Funkcional. Anal. i Priložen.**7**(1973), 88-89. MR**0330314 (48:8651)****[MeeSY]**W. Meeks, L. Simon and S. T. Yau,*Embedded minimal surfaces*, Ann. of Math.**116**(1982), 621-659. MR**678484 (84f:53053)****[Mes1]**G. Mess,*Centers of*-manifold groups and groups which are coarse quasiisometric to planes, Preprint, Univ. of Calif., Los Angeles, 1990.**[Mes2]**-,*Finite covers and a theorem of Lubotzky*, Preprint, Univ. of Calif., Los Angeles.**[Mey1]**R. Meyerhoff,*A lower bound for the volume of hyperbolic manifolds*, Canad. J. Math.**39**(1987), 1038-1056. MR**918586 (88k:57049)****[Mey2]**-,*Sphere-packing and volume in hyperbolic*-*space*, Comment. Math. Helv.**61**(1986), 271-278. MR**856090 (88e:52023)****[Mi1]**J. Milnor,*A unique decomposition theorem for*-*manifolds*, Amer. J. Math.**84**(1962), 1-7. MR**0142125 (25:5518)****[Mi2]**-,*A note on curvature and fundamental groups*, J. Differential Geometry**2**(1968), 1-7. MR**0232311 (38:636)****[P]**W. Parry,*A sharper Tits alternative for*-*manifold groups*, Preprint, Eastern Michigan Univ. MR**1194795 (93j:57002)****[Sc1]**P. Scott,*Finitely generated*-*manifold groups are finitely presented*, J. London Math. Soc.**2**(1973), 437-440. MR**0380763 (52:1660)****[Sc2]**-,*A new proof of the annulus and torus theorems*, Amer. J. Math.**102**(1980), 241-277. MR**564473 (81f:57006)****[Sc3]**-,*There are no fake Seifert fibered spaces with infinite*, Ann. of Math.**117**(1983), 35-70. MR**683801 (84c:57008)****[Sh]**P. B. Shalen,*A torus theorem for regular branched coverings of*, Michigan Math. J.**28**(1981), 347-358. MR**629367 (83d:57012)****[St1]**J. Stallings,*On the loop theorem*, Ann. of Math.**72**(1960), 12-19. MR**0121796 (22:12526)****[St2]**-,*Homology and lower central series of groups*, J. Algebra**2**(1965), 170-181. MR**0175956 (31:232)****[Th]**W. P. Thurston,*Geometry and toplogy of*-*manifolds*, Photocopied notes, Princeton Univ., 1978.**[Tuc]**T. Tucker,*On Kleinian groups and*-*manifolds of Euler characteristic zero*, Unpublished.**[Tur]**V. G. Turaev,*Nilpotent homotopy types of closed*-*manifolds*, (Topology, Leningrad, 1982), Lecture Noes in Math., vol. 1060, Springer-Verlag, 1984. MR**770255 (86i:57017)****[Wa]**P. Wagreich,*Singularities of complex surfaces with solvable local fundamental group*, Topology**11**(1972), 51-72. MR**0285536 (44:2754)****[We]**B. A. F. Wehrfritz,*Infinite linear groups*, Ergebnisse der Math. Grenzgebiete 76, Springer-Verlag, 1973. MR**0335656 (49:436)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57M05,
20F05,
57M07,
57N10

Retrieve articles in all journals with MSC: 57M05, 20F05, 57M07, 57N10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1156298-8

Article copyright:
© Copyright 1992
American Mathematical Society