Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Grothendieck groups of quotient singularities


Author: Eduardo do Nascimento Marcos
Journal: Trans. Amer. Math. Soc. 332 (1992), 93-119
MSC: Primary 19A31; Secondary 13A50, 14B05
DOI: https://doi.org/10.1090/S0002-9947-1992-1033235-8
MathSciNet review: 1033235
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a quotient singularity $ R = {S^G}$ where $ S = {\mathbf{C}}[[{x_1}, \ldots ,{x_n}]]$ is the formal power series ring in $ n$-variables over the complex numbers $ {\mathbf{C}}$, there is an epimorphism of Grothendieck groups $ \psi :{G_0}(S[G]) \to {G_0}(R)$, where $ S[G]$ is the skew group ring and $ \psi $ is induced by the fixed point functor.

The Grothendieck group of $ S[G]$ carries a natural structure of a ring, isomorphic to $ {G_0}({\mathbf{C}}[G])$.

We show how the structure of $ {G_0}(R)$ is related to the structure of the ramification locus of $ V$ over $ V/G$, and the action of $ G$ on it.

The first connection is given by showing that $ \operatorname{Ker}\;\psi $ is the ideal generated by $ [{\mathbf{C}}]$ if and only if $ G$ acts freely on $ V$. That this is sufficient has been proved by Auslander and Reiten in [4]. To prove the necessity we show the following:

Let $ U$ be an integrally closed domain and $ T$ the integral closure of $ U$ in a finite Galois extension of the field of quotients of $ U$ with Galois group $ G$. Suppose that $ \vert G\vert$ is invertible in $ U$, the inclusion of $ U$ in $ T$ is unramified at height one prime ideals and $ T$ is regular. Then $ {G_0}(T[G]) \cong Z$ if and only if $ U$ is regular.

We analyze the situation $ V = {V_1}{\coprod} _{\mathbf{C}[G]}{V_2}$ where $ G$ acts freely on $ {V_1},{V_1} \ne 0$.

We prove that for a quotient singularity $ R,{G_0}(R) \cong {G_0}(R[[t]])$.

We also study the structure of $ {G_0}(R)$ for some cases with $ \dim R = 3$.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander, On the purity of the branch locus, Amer. J. Math. 84 (1962), 116-125. MR 0137733 (25:1182)
  • [2] -, Notes of a course in singularities, Brandeis University, 1985.
  • [3] -, Notes of a course in representation of Artin algebras, Brandeis University.
  • [4] M. Auslander and I. Reiten, Grothendieck groups of algebras and orders, J. Pure Appl. Algebra 39 (1986), 1-51. MR 816889 (87g:16038)
  • [5] -, Grothendieck groups with nilpotent annihilators, Proc. Amer. Math. Soc. 103 (1988), 1022-1024. MR 954976 (89e:13015)
  • [6] H. Bass, Algebraic $ K$-theory, Benjamin, 1968. MR 0249491 (40:2736)
  • [7] S. Bochner and W. T. Martin, Several complex variables, Princeton Univ. Press, 1948. MR 0027863 (10:366a)
  • [8] N. Bourbaki, Elements of mathematics, Commutative Algebra, Addison-Wesley, 1972. MR 0360549 (50:12997)
  • [9] E. Brieskorn, Rationale Singularitäten Komplexer Flächen, Invent. Math. 4 (1968), 336-358. MR 0222084 (36:5136)
  • [10] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, 1956. MR 0077480 (17:1040e)
  • [11] R. M. Fossum, The divisor class group of a Krull domain, Springer-Verlag, 1960. MR 0382254 (52:3139)
  • [12] N. Jacobson, Basic algebra, Freeman, 1985. MR 780184 (86d:00001)
  • [13] M. Nagata, Local rings, Krieger, 1975. MR 0460307 (57:301)
  • [14] P. Samuel and O. Zariski, Commutative algebra, vol. II, Springer-Verlag, 1960. MR 0120249 (22:11006)
  • [15] J. P. Serre, Groupes finis d'automorphismes d'anneaux, locaux reguliers, Colloq. d'Algèbre No. 8, École Norm. Sup. de Jeunes Filles, Paris, 1967.
  • [16] R. G. Swan, $ K$-theory of finite groups and orders, Lecture Notes in Math., vol. 149, Springer, 1970. MR 0308195 (46:7310)
  • [17] J. A. Wolf, Spaces of constant curvature, McGraw-Hill, 1967. MR 0217740 (36:829)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 19A31, 13A50, 14B05

Retrieve articles in all journals with MSC: 19A31, 13A50, 14B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1033235-8
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society