Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Free $ \alpha$-extensions of an Archimedean vector lattice and their topological duals


Author: Anthony J. Macula
Journal: Trans. Amer. Math. Soc. 332 (1992), 437-448
MSC: Primary 46A40; Secondary 06A23
DOI: https://doi.org/10.1090/S0002-9947-1992-1050085-7
MathSciNet review: 1050085
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Arch denotes the category of Archimedean vector lattices with vector lattice homomorphisms, and $ \alpha $ denotes an uncountable cardinal number or the symbol $ \infty $. $ \operatorname{Arch}(\alpha )$ denotes the category of Arch objects with $ \alpha $-complete Arch morphisms.


References [Enhancements On Off] (What's this?)

  • [B] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., Providence, R. I., 3rd ed., 2nd printing, 1973. MR 0227053 (37:2638)
  • [BH$ _{1}$] R. N. Ball and A. W. Hager, Epicompletion of Archimedean $ l$-groups and vector lattices with weak unit, J. Austral. Math. Soc. Ser. A 48 (1990), 25-56. MR 1026835 (91g:06016)
  • [BH$ _{2}$] -, Epicomplete archimedean $ l$-groups and vector lattices, Trans. Amer. Math. Soc. 322 (1990), 459-478. MR 943603 (91c:46009)
  • [BH] -, Characterization of epimorphisms in Archimedean $ l$-groups and vector lattices, Chapter 8 Lattice-Ordered Groups, Advances and Techniques, (A. Glass and W. C. Holland, eds.), Kluwer, Dordrecht, 1989.
  • [BH$ _{4}$] -, Application of spaces with filters to Archimedean $ l$-groups, Proc. Conf. on Ordered Algebraic Structures, Curaçao, 1988 (J. Martinez, ed.), Kluwer, Dordrecht, 1989.
  • [BHM] R. N. Ball, A. W. Hager, and A. J. Macula, An $ \alpha $-disconnected space has no proper monic preimage, Topology Appl. (to appear). MR 1080348 (91m:18001)
  • [BHN] R. N. Ball, A. W. Hager, and C. Neville, The $ \kappa $-ideal completion of an Archimedean $ l$-group and the $ \kappa $-quasi-$ F$ cover of a compact space, General Topology Appl., Proc. Northeast Topology Conf., Wesleyan Univ., 1988 (R.M. Shortt, ed.), Marcel Dekker, New York, 1990, pp. 7-50. MR 1057622 (91m:54044)
  • [BKW] A. Bigard, K. Keimel and S. Wolfenstein, Groupes et anneaux réticules, Lecture Notes in Math., vol. 608, Springer-Verlag, Berlin, Heidelberg, and New York, 1977. MR 0552653 (58:27688)
  • [C] H. B. Cohen, The $ \kappa $-extremally disconnected spaces as projectives, Canad. J. Math. 16 (1964), 253-260. MR 0161294 (28:4502)
  • [Co] P. Conrad, Minimal vector lattice covers, Bull. Austral. Math. Soc. 4 (1971), 35-39. MR 0272692 (42:7573)
  • [DHH] F. Dashiell, A. W. Hager and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685. MR 586984 (81k:46020)
  • [dJvR] E. DeJonge and A. C. M. Van Rooij, Introduction to Riesz spaces, Math. Centre Tracts, no. 78, Amsterdam, 1977. MR 0473777 (57:13439)
  • [G] A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489. MR 0121775 (22:12509)
  • [GJ] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 0116199 (22:6994)
  • [H] A. W. Hager, Boolean algebras with $ \alpha $-complete morphisms, unpublished manuscript.
  • [HR$ _{1}$] A. W. Hager and L. C. Robertson, Representing and ringifying a Riesz space, Symposia Math. 21 (1977), 411-431. MR 0482728 (58:2783)
  • [HR$ _{2}$] -, On imbedding into a ring of an Archimedean lattice-ordered group, Canad. J. Math. 31 (1979), 1-8. MR 518700 (80h:16031)
  • [Ha] A. W. Hales, On the non-existence of free complete boolean algebras, Fund. Math. 54 (1964), 45-66. MR 0163863 (29:1162)
  • [HJ] M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961), 73-94. MR 0133698 (24:A3524)
  • [HVW] M. Henriksen, J. Vermeer, and R. G. Woods, Quasi-$ F$ covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), 779-803. MR 902798 (88m:54049)
  • [HS] H. Herrlich and G. Strecker, Category theory, Allyn and Bacon, Boston, Mass., 1973. MR 0349791 (50:2284)
  • [HeR] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin, 1963.
  • [K] J. Kerstan, Tensorielle Erweiterungen distributiver Verbände, Math. Nachr. 22 (1960), 1-20. MR 0140454 (25:3874)
  • [LZ] W. Luxemburg and A. Zaanen, Riesz spaces, Vol. I, North-Holland, Amsterdam, 1971. MR 0511676 (58:23483)
  • [M$ _{1}$] A. J. Macula, Thesis, Wesleyan Univ., 1989.
  • [M$ _{2}$] -, $ \alpha $-Dedekind complete Archimedean vector lattices vs, $ \alpha $-quasi-$ F$ spaces, Topology Appl. (to appear).
  • [M$ _{3}$] -, Monic sometimes means $ \alpha $-irreducible, General Topology and its Appl., Vol. 134, (S. J. Andima et al., ed.), Marcel Dekker, New York, 1991, pp. 239-260.
  • [PW] J. R. Porter and R. G. Woods, Extensions and absolutes of Hausdorff spaces, Springer-Verlag, New York, 1988. MR 918341 (89b:54003)
  • [S] R. Sikorski, Boolean algebra, 3rd ed., Springer-Verlag, Berlin, 1969.
  • [S$ _{2}$] -, On extensions and products of boolean algebras, Fund. Math. 53 (1963), 99-116. MR 0155776 (27:5710)
  • [W] R. G. Woods, Covering properties and coreflective subcategories, Proc. CCNY Conf. on Limits 1987, Ann. N. Y. Acad. Sci. (to appear). MR 1020785 (90m:54016)
  • [Y] K. Yosida, On the representation of a vector lattice, Proc. Imp. Acad. Tokyo 18 (1942), 339-342. MR 0015378 (7:409f)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A40, 06A23

Retrieve articles in all journals with MSC: 46A40, 06A23


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1050085-7
Keywords: Free $ \alpha $-regular extension, free $ \alpha $-extension, $ \alpha $-complete vector lattice, $ \alpha $-disconnected space, Yosida space
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society