The center of is the set of symmetric polynomials in commuting transposition-sums

Author:
Gadi Moran

Journal:
Trans. Amer. Math. Soc. **332** (1992), 167-180

MSC:
Primary 20C30; Secondary 05E05, 05E10

MathSciNet review:
1062873

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the symmetric group on the symbols . We show that the center of the group-ring coincides with the set of symmetric polynomials with integral coefficients in the elements , where is a sum of transpositions, . In particular, every conjugacy-class-sum of is a symmetric polynomial in .

**[C]**Jin Quan Chen,*Group representation theory for physicists*, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. With a foreword by Morton Hamermesh. MR**1005326****[D]**P. A. M. Dirac,*The principles of quantum mechanics*, 4th ed., Oxford Univ. Press, 1958.**[KM]**J. Katriel and G. Moran,*Generating the center of the symmetric group-algebra by transposition class-sums of its symmetric subgroups*(submitted).**[M]**I. G. Macdonald,*Symmetric functions and Hall polynomials*, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. MR**553598****[FH]**H. K. Farahat and G. Higman,*The centres of symmetric group rings*, Proc. Roy. Soc. London Ser. A**250**(1959), 212–221. MR**0103935****[J]**A.-A. A. Jucys,*Symmetric polynomials and the center of the symmetric group ring*, Rep. Mathematical Phys.**5**(1974), no. 1, 107–112. MR**0419576****[M]**G. E. Murphy,*The idempotents of the symmetric group and Nakayama’s conjecture*, J. Algebra**81**(1983), no. 1, 258–265. MR**696137**, 10.1016/0021-8693(83)90219-3

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20C30,
05E05,
05E10

Retrieve articles in all journals with MSC: 20C30, 05E05, 05E10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1062873-1

Article copyright:
© Copyright 1992
American Mathematical Society