Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Stability for an inverse problem in potential theory

Authors: Hamid Bellout, Avner Friedman and Victor Isakov
Journal: Trans. Amer. Math. Soc. 332 (1992), 271-296
MSC: Primary 31B20; Secondary 31B35, 35J25, 35R30
MathSciNet review: 1069743
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D$ be a subdomain of a bounded domain $ \Omega $ in $ {\mathbb{R}^n}$ . The conductivity coefficient of $ D$ is a positive constant $ k \ne 1$ and the conductivity of $ \Omega \backslash D$ is equal to $ 1$. For a given current density $ g$ on $ \partial \Omega $ , we compute the resulting potential $ u$ and denote by $ f$ the value of $ u$ on $ \partial \Omega $. The general inverse problem is to estimate the location of $ D$ from the known measurements of the voltage $ f$. If $ {D_h}$ is a family of domains for which the Hausdorff distance $ d(D,{D_h})$ equal to $ O(h)$ ($ h$ small), then the corresponding measurements $ {f_h}$ are $ O(h)$ close to $ f$. This paper is concerned with proving the inverse, that is, $ d(D,{D_h}) \leq \frac{1}{c}\left\Vert {f_h} - f\right\Vert $ , $ c > 0$ ; the domains $ D$ and $ {D_h}$ are assumed to be piecewise smooth. If $ n \geq 3$ , we assume in proving the above result, that $ {D_h} \supset D$ (or $ {D_h} \subset D$) for all small $ h$ . For $ n = 2$ this monotonicity condition is dropped, provided $ g$ is appropriately chosen. The above stability estimate provides quantitative information on the location of $ {D_h}$ by means of $ {f_h}$ .

References [Enhancements On Off] (What's this?)

  • [1] H. Bellout and A. Friedman, Identification problems in potential theory, Arch. Rational Mech. Anal. 101 (1988), 143-160. MR 921936 (89c:31003)
  • [2] L. Escauriaza, E. Fabes, and G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundary, Proc. Amer. Math. Soc. (to appear). MR 1092919 (92j:35020)
  • [3] G. Eskin, Index formulas for elliptic boundary value problems in plane domains with corners, Trans. Amer. Math. Soc. 314 (1989), 283-348. MR 961621 (90a:35078)
  • [4] A. Friedman, Partial differential equations, Holt, Rinehart and Winston, New York, 1969 (reprinted by Krieger). MR 0445088 (56:3433)
  • [5] A. Friedman and B. Gustafsson, Identification of the conductivity coefficient in an elliptic equation, SIAM J. Math. Anal. 18 (1987), 777-787. MR 883568 (88c:35150)
  • [6] A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement, Indiana Univ. Math. J. 38 (1989), 553-580. MR 1017325 (91a:35164)
  • [7] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, London, 1985. MR 775683 (86m:35044)
  • [8] N. I. Muskhelishvili, Singular integral equations, Noordhoff, Groningen, 1953. MR 0355494 (50:7968)
  • [9] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinues, Lecture Notes, Univ. de Montreal, 1965.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31B20, 31B35, 35J25, 35R30

Retrieve articles in all journals with MSC: 31B20, 31B35, 35J25, 35R30

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society