Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rational fibrations in differential homological algebra


Author: Aniceto Murillo
Journal: Trans. Amer. Math. Soc. 332 (1992), 79-91
MSC: Primary 55P62; Secondary 18G15
DOI: https://doi.org/10.1090/S0002-9947-1992-1079055-X
MathSciNet review: 1079055
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, a result of [6] is generalized as follows: Given a fibration $ F \to E\xrightarrow{p}B$ of simply connected spaces in which either, the fibre has finite dimensional rational cohomology, or, it has finite dimensional rational homotopy and $ \rho $ induces a surjection in rational homotopy, we construct an explicit isomorphism,

\begin{displaymath}\begin{array}{*{20}{c}} {\varphi :\operatorname{Ext}_{{C^\ast... ...(E;{\mathbf{Q}})}(Q,{C^\ast}(E;{\mathbf{Q}})).} \\ \end{array} \end{displaymath}

This is deduced from its "algebraic translation," a more general result in the environment of graded differential homological algebra.


References [Enhancements On Off] (What's this?)

  • [1] L. Avramov and S. Halperin, Through the looking glass: A dictionary between rational homotopy theory and local algebra, Algebra, Algebraic Topology and their Interactions, Lecture Notes in Math., vol. 1183, Springer-Verlag, Berlin, 1986. MR 846435 (87k:55015)
  • [2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 0153708 (27:3669)
  • [3] A. K. Bousfield and V. K. A. M. Gugenheim, On $ PL$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. No. 179, 1976. MR 0425956 (54:13906)
  • [4] S. Eilenberg and J. C. Moore, Homology and fibrations, Comment. Math. Helv. 40 (1966), 199-236. MR 0203730 (34:3579)
  • [5] Y. Félix and S. Halperin, Rational $ L{\text{-}}S$ category and its applications, Trans. Amer. Math. Soc. 273 (1982), 1-37. MR 664027 (84h:55011)
  • [6] Y. Félix, S. Halperin and J. C. Thomas, Gorenstein spaces, Adv. in Math. 71 (1988), 92-112. MR 960364 (89k:55019)
  • [7] P. P. Grivel, Formes différentielles et suites spectrales, Ann. Inst. Fourier (Grenoble) 29 (1979), 17-37. MR 552958 (81b:55041)
  • [8] S. Halperin, Lectures on minimal models, Mém. Soc. Math. France 9/10 (1983). MR 736299 (85i:55009)
  • [9] -, Rational fibrations, minimal models and fibring of homogeneous spaces, Trans. Amer. Math. Soc. 244 (1978), 199-224. MR 0515558 (58:24264)
  • [10] S. Halperin and G. Levin, High skeleta of $ CW$-complexes, Algebra, Algebraic Topology and their Interactions, Lecture Notes in Math., vol. 1183, Springer-Verlag, Berlin, 1986. MR 846450 (87m:55013)
  • [11] J. C. Moore, Algèbre homologique et Homologie des espaces classifiants, Séminaire Henri Cartan 1959/60, exposé 7, École Norm. Sup., Paris, 1960.
  • [12] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. No. 47, 1978, pp. 269-331. MR 0646078 (58:31119)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P62, 18G15

Retrieve articles in all journals with MSC: 55P62, 18G15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1079055-X
Keywords: Rational fibration, differential homological algebra, Sullivan models
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society