Quasidiagonality of direct sums of weighted shifts

Author:
Sivaram K. Narayan

Journal:
Trans. Amer. Math. Soc. **332** (1992), 757-774

MSC:
Primary 47B37; Secondary 47A66

DOI:
https://doi.org/10.1090/S0002-9947-1992-1012511-9

MathSciNet review:
1012511

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a separable Hilbert space. A bounded linear operator defined on is said to be *quasidiagonal* if there exists a sequence of projections of finite rank such that strongly and as .

We give a necessary and sufficient condition for a finite direct sum of weighted shifts to be quasidiagonal. The condition is stated using a *marked graph* (a graph with a , or attached to its vertices) that can be associated with the direct sum.

**[1]**C. Apostol, C. Foias, and D. Voiculescu,*Some results on non-quasitriangular operators*, IV, Rev. Roumaine Math. Pures Appl.**18**(1973), 487-514.**[2]**L. W. Beineke and F. Harary,*Consistency in marked digraphs*, J. Math. Psych.**18**(1978), 260-269. MR**522390 (80d:05026)****[3]**-,*Consistent graphs with signed points*, Riv. Mat. Sci. Econom. Social.**1**(1978), 81-88. MR**573718 (81h:05108)****[4]**J. A. Bondy and U. S. R. Murty,*Graph theory with applications*, Macmillan, London and Elsevier, New York, 1976. MR**0411988 (54:117)****[5]**L. G. Brown,*The universal coefficient theorem for**and quasidiagonality*, Operator Algebras and Group Representations, Vol. 1, Pitman Monographs and Studies in Math. 17, Pitman Adv. Publ. Program, Boston, Mass., 1984, pp. 60-64. MR**731763 (85m:46066)****[6]**-,*Generalized crossed products of*-*algebras*(in preparation).**[7]**J. B. Conway,*A course in functional analysis*, Graduate Texts in Math. 96, Springer-Verlag, New York, 1985. MR**768926 (86h:46001)****[8]**D. Hadwin,*Strongly quasidiagonal*-*algebras*, J. Operator Theory**18**(1987), 3-18. MR**912809 (89d:46060)****[9]**P. R. Halmos,*Quasitriangular operators*, Acta Sci. Math. (Szeged)**29**(1968), 283-293. MR**0234310 (38:2627)****[10]**-,*Ten problems in Hilbert space*, Bull. Amer. Math. Soc.**76**(1970), 887-933. MR**0270173 (42:5066)****[11]**-,*A Hilbert space problem book*, 2nd ed., Graduate Texts in Math. 19, Springer-Verlag, New York, 1982. MR**675952 (84e:47001)****[12]**D. A. Herrero,*Approximation of Hilbert space operators*, Vol. 1, Research Notes in Math. 72, Pitman Adv. Publ. Program, Boston, Mass., 1982. MR**676127 (85m:47001)****[13]**G. Luecke,*A note on quasidiagonal and quasitriangular operators*, Pacific J. Math.**56**(1975), 179-185. MR**0374963 (51:11159)****[14]**C. M. Pearcy,*Some recent developments in operator theory*, CBMS Regional Conf. Series Math., no. 36, Amer. Math. Soc., Providence, R.I., 1978. MR**0487495 (58:7120)****[15]**A. L. Shields,*Weighted shift operators and analytic function theory*, Math. Surveys, no. 13, edited by C. M. Pearcy, Amer. Math. Soc., Providence, R.I., 1974. MR**0361899 (50:14341)****[16]**R. A. Smucker,*Quasidiagonal and quasitriangular operators*, Dissertation, Indiana Univ., 1973.**[17]**-,*Quasidiagonal weighted shifts*, Pacific J. Math.**98**(1982), 173-182. MR**644948 (83c:47045)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47B37,
47A66

Retrieve articles in all journals with MSC: 47B37, 47A66

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1012511-9

Keywords:
Quasidiagonality,
weighted shifts,
marked graphs,
crossed products of -algebras

Article copyright:
© Copyright 1992
American Mathematical Society