Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quasidiagonality of direct sums of weighted shifts


Author: Sivaram K. Narayan
Journal: Trans. Amer. Math. Soc. 332 (1992), 757-774
MSC: Primary 47B37; Secondary 47A66
DOI: https://doi.org/10.1090/S0002-9947-1992-1012511-9
MathSciNet review: 1012511
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{H}$ be a separable Hilbert space. A bounded linear operator $ A$ defined on $ \mathcal{H}$ is said to be quasidiagonal if there exists a sequence $ \{ {P_n}\} $ of projections of finite rank such that $ {P_n} \to I$ strongly and $ \left\Vert A{P_n} - {P_n}A\right\Vert \to 0$ as $ n \to \infty $.

We give a necessary and sufficient condition for a finite direct sum of weighted shifts to be quasidiagonal. The condition is stated using a marked graph (a graph with a $ (0)$, $ ( + )$ or $ ( - )$ attached to its vertices) that can be associated with the direct sum.


References [Enhancements On Off] (What's this?)

  • [1] C. Apostol, C. Foias, and D. Voiculescu, Some results on non-quasitriangular operators, IV, Rev. Roumaine Math. Pures Appl. 18 (1973), 487-514.
  • [2] L. W. Beineke and F. Harary, Consistency in marked digraphs, J. Math. Psych. 18 (1978), 260-269. MR 522390 (80d:05026)
  • [3] -, Consistent graphs with signed points, Riv. Mat. Sci. Econom. Social. 1 (1978), 81-88. MR 573718 (81h:05108)
  • [4] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan, London and Elsevier, New York, 1976. MR 0411988 (54:117)
  • [5] L. G. Brown, The universal coefficient theorem for $ \operatorname{Ext}$ and quasidiagonality, Operator Algebras and Group Representations, Vol. 1, Pitman Monographs and Studies in Math. 17, Pitman Adv. Publ. Program, Boston, Mass., 1984, pp. 60-64. MR 731763 (85m:46066)
  • [6] -, Generalized crossed products of $ {C^{\ast}}$-algebras (in preparation).
  • [7] J. B. Conway, A course in functional analysis, Graduate Texts in Math. 96, Springer-Verlag, New York, 1985. MR 768926 (86h:46001)
  • [8] D. Hadwin, Strongly quasidiagonal $ {C^{\ast}}$-algebras, J. Operator Theory 18 (1987), 3-18. MR 912809 (89d:46060)
  • [9] P. R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283-293. MR 0234310 (38:2627)
  • [10] -, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. MR 0270173 (42:5066)
  • [11] -, A Hilbert space problem book, 2nd ed., Graduate Texts in Math. 19, Springer-Verlag, New York, 1982. MR 675952 (84e:47001)
  • [12] D. A. Herrero, Approximation of Hilbert space operators, Vol. 1, Research Notes in Math. 72, Pitman Adv. Publ. Program, Boston, Mass., 1982. MR 676127 (85m:47001)
  • [13] G. Luecke, A note on quasidiagonal and quasitriangular operators, Pacific J. Math. 56 (1975), 179-185. MR 0374963 (51:11159)
  • [14] C. M. Pearcy, Some recent developments in operator theory, CBMS Regional Conf. Series Math., no. 36, Amer. Math. Soc., Providence, R.I., 1978. MR 0487495 (58:7120)
  • [15] A. L. Shields, Weighted shift operators and analytic function theory, Math. Surveys, no. 13, edited by C. M. Pearcy, Amer. Math. Soc., Providence, R.I., 1974. MR 0361899 (50:14341)
  • [16] R. A. Smucker, Quasidiagonal and quasitriangular operators, Dissertation, Indiana Univ., 1973.
  • [17] -, Quasidiagonal weighted shifts, Pacific J. Math. 98 (1982), 173-182. MR 644948 (83c:47045)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B37, 47A66

Retrieve articles in all journals with MSC: 47B37, 47A66


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1012511-9
Keywords: Quasidiagonality, weighted shifts, marked graphs, crossed products of $ {C^{\ast} }$-algebras
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society