Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Gauss map for Kählerian submanifolds of $ {\bf R}\sp n$


Authors: Marco Rigoli and Renato Tribuzy
Journal: Trans. Amer. Math. Soc. 332 (1992), 515-528
MSC: Primary 53C55; Secondary 53C40
DOI: https://doi.org/10.1090/S0002-9947-1992-1040265-9
MathSciNet review: 1040265
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a Gauss map for Kähler submanifolds of Euclidean space and study its geometry in relation to that of the given immersion. In particular we generalize a number of results of the classical theory of minimal surfaces in Euclidean space.


References [Enhancements On Off] (What's this?)

  • [C] S. S. Chern, Minimal surfaces in Euclidean space of $ N$ dimensions, Sympos. in Honour of Marston Morse, Princeton Univ. Press, Princeton, N.J., 1965, pp. 187-198. MR 0180926 (31:5156)
  • [C-L] S. S. Chern and R. Lashof, On the total curvature of immersed manifold, Amer. J. Math. 79 (1957), 306-318. MR 0084811 (18:927a)
  • [D-G] M. Dacjzer and D. Gromoll, Real Kähler submanifolds and uniqueness of the Gauss map, J. Differential Geom. 82 (1985), 13-28.
  • [D-R] M. Dacjzer and L. Rodriguez, Rigidity of real Kähler submanifolds, Duke Math. J. 53 (1986), 211-220. MR 835806 (87g:53089)
  • [D-T] M. Dacjzer and G. Thorbergsson, Holomorphicity of minimal submanifolds in complex space forms, Math. Ann. 277 (1987), 353-360. MR 891580 (89b:53094)
  • [F1] D. Feras, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81-93. MR 565140 (81i:53040)
  • [F2] -, On the volume of the generalized Gauss map, Geom. Dedicata 14 (1983), 237-242. MR 710573 (85g:53063)
  • [J-R] G. R. Jensen and M. Rigoli, Harmonically immersed surfaces of $ {{\mathbf{R}}^n}$, Trans. Amer. Math. Soc. 307 (1988), 363-372. MR 936822 (89g:53006)
  • [L] H. B. Lawson, Lectures on minimal submanifolds, Publish or Perish, 1980.
  • [N-N] A. Newlander and L. Niremberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391-404. MR 0088770 (19:577a)
  • [O] M. Obata, The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature, J. Differential Geom. 2 (1968), 217-223. MR 0234388 (38:2705)
  • [R] J. H. Rawnsley, $ f$-structures, $ f$-twistor spaces and harmonic maps, Geom. Seminar L. Bianchi II (1984); Lecture Notes in Math., vol. 1164, Springer Verlag, 1985, pp. 86-159. MR 829229 (87h:58048)
  • [R-V] E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573. MR 0259768 (41:4400)
  • [R-T] L. Rodriguez and R. Tribuzy, Reduction of codimension of regular immersions, Math. Z. 185 (1984), 321-331. MR 731680 (85b:53065)
  • [U] S. Udagawa, Minimal immersions of Kähler manifolds into complex space forms, Tokyo J. Math. 10 (1987), 227-239. MR 899486 (88h:53055)
  • [Y] S. T. Yau, Submanifolds of constant mean curvatures. I, Amer. J. Math. 96 (1974), 346-366. MR 0370443 (51:6670)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C55, 53C40

Retrieve articles in all journals with MSC: 53C55, 53C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1040265-9
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society